智能优化算法应用:基于瞬态优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于瞬态优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于瞬态优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.瞬态优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用瞬态优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.瞬态优化算法

瞬态优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121303562
瞬态优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

瞬态优化算法参数如下:

%% 设定瞬态优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明瞬态优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/290181.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反网络爬虫的三个阶段

随着网络爬虫的普及和网络攻击的日益复杂,升级网络安全措施成为保护网站和应用程序免受恶意爬虫侵害的必要举措。本文将深入研究反网络爬虫的三个阶段,并详细探讨IP地址过滤的策略,以提升网络的安全性。 第一部分:反网络爬虫的三…

算法-动态规划

动态规划算法 应用场景-背包问题 介绍 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题&#xff0…

MaBatis使用`ResultMap`标签手动映射详解使用

文章目录 MaBatis使用ResultMap标签手动映射详解使用1、MyBatis只能自动维护库表”列名“与”属性名“相同时的对应关系,二者不同时无法自动ORM,如下:2、在SQL中使用 as 为查询字段添加列别名,以匹配属性名:但是如果我…

【Hadoop精讲】HDFS详解

目录 理论知识点 角色功能 元数据持久化 安全模式 SecondaryNameNode(SNN) 副本放置策略 HDFS写流程 HDFS读流程 HA高可用 CPA原则 Paxos算法 HA解决方案 HDFS-Fedration解决方案(联邦机制) 理论知识点 角色功能 元数据持久化 另一台机器就…

nginx转发ingress-nginx问题记录

背景 想直接通过域名访问k8s上的服务. 想到k8s上可以直接通过ingress配置. 不过ingress默认启动的端口3xxxxx. 一般不可能让用户访问我们的服务加上端口. 所以现在要解决直接通过80端口访问ingress的问题. 方案 修改ingress-nginx端口(这个是在网上搜到的方案, 但未选择) 这…

ssm基于vue技术的绿色蔬菜销售管理系统+vue论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本绿色蔬菜销售管理就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息…

2023最新最全【MYSQL】8.0.11下载,零基础入门到精通

1、下载安装: MySQL8下载地址:点击No thanks 点击底部“No thanks, just start my download.”直接下载就行。 然后将压缩包解压到电脑,直接抄我的 D:\Program Files (x86)\mysql\mysql-8.0.11-winx64 2、配置环境(win10&#x…

神经网络:优化器和全连接层

SGD(随机梯度下降) 随机梯度下降的优化算法在科研和工业界是很常用的。 很多理论和工程问题都能转化成对目标函数进行最小化的数学问题。 举个例子:梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低…

云原生系列2-CICD持续集成部署-GitLab和Jenkins

1、CICD持续集成部署 传统软件开发流程: 1、项目经理分配模块开发任务给开发人员(项目经理-开发) 2、每个模块单独开发完毕(开发),单元测试(测试) 3、开发完毕后,集成部…

海康威视运行管理中心 Fastjson RCE

漏洞描述 海康威视运行管理中心系统存在低版本Fastjson远程命令执行漏洞,攻击者可在未鉴权情况下获取服务器权限,且由于存在相关依赖,即使服务器不出网无法远程加载恶意类也可通过本地利用链直接命令执行,从而获取服务器权限。 漏…

AMD和CMD的区别

AMD和CMD的区别 AMD和CMD的区别 AMD和CMD的区别 依赖引入不同 AMD: 依赖前置 CMD:就近依赖模块导出不同 AMD:return 返回值 CMD:exports //CMD define(function(){//依赖就近书写var module1 require(Module1);var result1 module1.exec();//exports导出module.exports {r…

【RTOS学习】源码分析(信号量和互斥量 事件组 任务通知)

🐱作者:一只大喵咪1201 🐱专栏:《RTOS学习》 🔥格言:你只管努力,剩下的交给时间! 目录 🍓信号量和互斥量🍅创建🍅Take🍅Give &#x…