智能优化算法应用:基于堆优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于堆优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于堆优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.堆优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用堆优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.堆优化算法

堆优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121930908
堆优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

堆优化算法参数如下:

%% 设定堆优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明堆优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/292542.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文笔记】3D Gaussian Splatting for Real-Time Radiance Field Rendering

原文链接:https://arxiv.org/abs/2308.04079 1. 引言 网孔和点是最常见的3D场景表达,因其是显式的且适合基于GPU/CUDA的快速栅格化。神经辐射场(NeRF)则建立连续的场景表达便于优化,但渲染时的随机采样耗时且引入噪声…

显示器屏幕oled的性能、使用场景、维护

OLED显示器屏幕具有许多独特的性能和使用场景,以下是关于OLED显示器屏幕的性能、使用场景和维护的详细介绍: 一、性能 色彩鲜艳:OLED显示器屏幕能够呈现出更加鲜艳的色彩,色彩饱和度高,色彩还原性好,可以给…

美好蕴育润康:为孕产期女性量身定制的专业营养

如今,孕产期是女性人生中特别而又重要的阶段。这段时间,孕期妈妈经常饱受许多痛苦和不适,更需要额外的关爱和呵护,以确保母婴健康。为了满足孕产期女性特殊的营养需求,美好蕴育润康应运而生,成为她们身边的…

关于“Python”的核心知识点整理大全35

目录 13.3.4 重构 create_fleet() game_functions.py 13.3.5 添加行 game_functions.py alien_invasion.py 13.4 让外星人群移动 13.4.1 向右移动外星人 settings.py alien.py alien_invasion.py game_functions.py 13.4.2 创建表示外星人移动方向的设置 13.4.3 检…

在Portainer创建Nginx容器并部署Web静态站点实现公网访问

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,…

uniapp如何原生app-云打包

首先第一步,需要大家在HBuilder X中找到一个项目,然后呢在找到上面的发行选项 发行->原生App-云打包 选择完该选中的直接大包就ok。 大包完毕后呢,会出现一个apk包,这是后将这个包拖动发给随便一个人就行了。 然后接收到的那…

二分查找法详解(6种变形)

前言 在之前的博客中,我给大家介绍了最基础的二分查找法(没学的话点我点我!) 今天我将带大家学习二分法的六种变形如何使用,小伙伴们,快来开始今天的学习吧! 文章目录 1,查找第一个…

浏览器的工作原理 - 从输入URL 按下回车到页面展示过程发生了什么?

本文带大家一起了解一下从我们输入一个网址链接开始到页面展示在我们面前,整个浏览器发生了什么?或者说浏览器做了哪些事,咱们以大家常用的baidu.com为例,从输入到 baidu.com 页面出现的整个流程 第一步:地址栏中敲击第…

基于ssm家具销售库存管理信息系统的设计与实现论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本家具销售库存管理信息系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的…

Ubuntu 常用命令之 clear 命令用法介绍

📑Linux/Ubuntu 常用命令归类整理 clear命令在Ubuntu系统下用于清除终端屏幕的内容。这个命令没有任何参数,它的主要作用就是清理终端屏幕上的所有信息,使得屏幕看起来像是新打开的一样。 使用clear命令非常简单,只需要在终端中…

大疆又出新品:户外电源

大疆创新最近发布了两款强大的户外电源:DJI Power 1000 和 DJI Power 500。这两款产品都具有高效储能、便携易用、安全放心、续航强大等优势,让你在户外探险时拥有更多可能性。 DJI Power 1000 电池容量:1024 瓦时(约 1 度电&…

【Linux进阶之路】线程

文章目录 一、初始线程1.概念2.执行3.调度4.切换 二、线程控制1.创建2.等待3.分离4.退出5.取消 三、线程安全1.互斥1.1初始1.2理解1.3锁1.3.1概念1.3.2原理1.3.4死锁 2.同步2.1概念2.2原理 3.生产消费者模型 总结尾序 一、初始线程 1.概念 简单的概念: 线程就是一…