【每日一题】得到山形数组的最少删除次数

文章目录

  • Tag
  • 题目来源
  • 解题思路
    • 方法一:最长递增子序列
  • 写在最后

Tag

【最长递增子序列】【数组】【2023-12-22】


题目来源

1671. 得到山形数组的最少删除次数


解题思路

方法一:最长递增子序列

前后缀分解

根据前后缀思想,以 nums[i] 为山顶的山形数组可以看成 nums[i] 左侧以其作为结尾的最长递增子序列,我们记左侧的最长递增子序列的长度为 pre[i],拼接上 nums[i] 右侧以其作为结尾的最长递减子序列,我们记右侧的最长递减子序列的长度为 suf[i],此时以 nums[i] 为山顶的山形数组长度为:
p r e [ i ] + s u f [ i ] − 1 pre[i] + suf[i] - 1 pre[i]+suf[i]1
我们枚举所有的 nums[i],计算所有的最长山顶数组长度 maxLen,最后需要删除的数组元素长度为 n - maxLen 即为最后需要返回的答案。

最长递增子序列

如何计算 presuf

presuf 的计算过程类似。先来看一下 pre 的计算。维护数组 prepre[i] 表示以 nums[i] 作为结尾的最长递增子序列的长度;维护辅助数组 g,表示以当前元素 nums[i] 结尾的最长递增子序列数组。

遍历数组 nums,当前遍历的元素为 nums[i] 记为 x,在数组 g 中使用二分查找找到第一个大于 x 的元素,对应的位置为 it - g.begin() + 1

  • 更新 pre[i] = it - g.begin() + 1
  • 如果 x 不在 g 中,则将 x 加入 g;否则将 x 更新到 g 中相应的位置。

suf 的计算过程中,我们从后往前遍历数组 nums,就是找最长的递增子序列,于是计算过程和 pre 的计算类似。

remark1:因为山峰不可能在数组首和尾两个位置出现,那么在遍历所有山峰的范围 [0, n-1] 时,需要先做判断 pre[i] >= 2 && suf[i] >= 2

remark2:可以先计算 suf,然后一起计算 pre 和更新答案的,留给读者自己实现。

算法

class Solution {
public:int minimumMountainRemovals(vector<int>& nums) {int n = nums.size();vector<int> pre(n), g;for (int i = 0; i < n; ++i) {int x = nums[i];auto it = lower_bound(g.begin(), g.end(), x);pre[i] = it - g.begin() + 1;if (it == g.end()) {g.push_back(x);}else {*it = x;}}vector<int> suf(n);g.clear();for (int i = n - 1; i >= 0; --i) {int x = nums[i];auto it = lower_bound(g.begin(), g.end(), x);suf[i] = it - g.begin() + 1;if (it == g.end()) {g.push_back(x);}else {*it = x;}}int mx = 0;for (int i = 1; i < n - 1; ++i) {mx = max(mx, pre[i] + suf[i] - 1);}return n - mx;}
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),更新 presuf 的时间复杂度都为 O(nlogn),更新答案的时间复杂度为 O ( n ) O(n) O(n)

空间复杂度: O ( n ) O(n) O(n),额外占用的空间为数组 presufg。空间复杂度: O ( n ) O(n) O(n),额外占用的空间为数组 presufg


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/292571.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windos/ubuntu20.4下UE4.27.2像素流送

windows/ubuntu20.4下UE4.27.2像素流送 像素流送技术可以将服务器端打包的虚幻引擎应用程序在客户端的浏览器上运行&#xff0c;用户可以通过浏览器操作虚幻引擎应用程序&#xff0c;客户端无需下载虚幻引擎&#xff0c;本文实现两台机器通过物理介质网线实现虚幻引擎应用程序…

使用PJL 开发一个文档打印多份copies的打印顺序参数是啥?

现在需要一个文档一份打印完成后再打印另一份的参数&#xff1b;功能同Window的“逐份打印”功能

JavaOOP篇----第十一篇

系列文章目录 文章目录 系列文章目录前言一、Static关键字有什么作用?二、final在java中的作用,有哪些用法?三、StringString StringBuffffer 和 StringBuilder 的区别是什么?四、String str=”aaa”,与String str=new String(“aaa”)一样吗?前言 前些天发现了一个巨牛的…

现代雷达车载应用——第3章 MIMO雷达技术 3.2节 汽车MIMO雷达波形正交策略

经典著作&#xff0c;值得一读&#xff0c;英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 3.2 汽车MIMO雷达波形正交策略 基于MIMO雷达技术的汽车雷达虚拟阵列合成依赖于不同天线发射信号的可分离性。当不同天线的发射信号正交时&#x…

LangChain入门指南:定义、功能和工作原理

LangChain入门指南&#xff1a;定义、功能和工作原理 引言LangChain是什么&#xff1f;LangChain的核心功能LangChain的工作原理LangChain实际应用案例如何开始使用LangChain 引言 在人工智能的浪潮中&#xff0c;语言模型已成为推动技术革新的重要力量。从简单的文本生成到复…

PMP证书的PDU如何获得?

首先&#xff0c;让我们来了解一下PDU的含义。PDU代表专业发展单元&#xff08;Professional Development Unit&#xff09;&#xff0c;是指在获得认证后&#xff0c;您可以通过学习、授课或提供志愿服务来积累专业项目管理领域的学习时间。PDU以小时为单位计算&#xff0c;每…

柔性屏的性能、使用、维护

柔性屏是一种新型的显示技术&#xff0c;相比传统刚性屏幕&#xff0c;具有许多独特的优势。以下是关于柔性屏的性能、使用和维护的详细介绍&#xff1a; 一、性能 弯曲性&#xff1a;柔性屏幕可以轻松弯曲、卷曲或弯折&#xff0c;适应不同的表面形状&#xff0c;如弧形墙面、…

猜数字游戏 C语言xdoj490

问题描述 猜数字游戏是令游戏机随机产生一个 100 以内的正整数&#xff0c;用户输入一个数对其进行猜测&#xff0c;需要你编写程序自动对其与随机产生的被猜数进行比较&#xff0c;并提示大了&#xff08;“Too big”&#xff09;&#xff0c;还是小了&#xff08;“Too smal…

帕累托森林CEO李朝政博士受邀「OSS-Compass」开源年会畅谈:开源框架下的奇异竞争规则

导语 “怎么在别人知道你的代码和战略时&#xff0c;你仍然拥有壁垒&#xff1f;”这是开源框架下&#xff0c;商业必须思考的问题。 软件驱动世界运转。但当基础层代码失去了有深度活力的“动态延伸”潜力&#xff0c;便会遭致市场“零定价”的宿命。动态延伸的效率&#xf…

【深度学习】序列生成模型(六):评价方法计算实例:计算ROUGE-N得分【理论到程序】

文章目录 一、BLEU-N得分&#xff08;Bilingual Evaluation Understudy&#xff09;二、ROUGE-N得分&#xff08;Recall-Oriented Understudy for Gisting Evaluation&#xff09;1. 定义2. 计算N1N2 3. 程序 给定一个生成序列“The cat sat on the mat”和两个参考序列“The c…

influxdb-cluster集群部署

一.下载安装包 略 二.集群文件配置修改 ip地址服务名称192.168.110.110influxdb,meta192.168.110.111influxdb,meta192.168.110.118meta 1.influxdb-meta.conf配置文件修改 meta至少三个节点修改配置比较简单 hostname "192.168.110.110" dir "/data/…

C++实现位图

目录 一、什么是位图 二、位图类 1.参数及构造函数 2.set函数设置为1&#xff08;代表存在&#xff09; 3.reset函数设置为0&#xff08;代表不存在&#xff09; 4.test函数查看状态&#xff08;0还是1&#xff09; 三、位图的变形 一、什么是位图 位图这个词汇比较少见…