深度学习目标检测(2)yolov3设计思想

YOLOv3基础

YOLOv3算法基本思想可以分成两部分:

  • 按一定规则在图片上产生一系列的候选区域,然后根据这些候选区域与图片上物体真实框之间的位置关系对候选区域进行标注。跟真实框足够接近的那些候选区域会被标注为正样本,同时将真实框的位置作为正样本的位置目标。偏离真实框较大的那些候选区域则会被标注为负样本,负样本不需要预测位置或者类别。
  • 使用卷积神经网络提取图片特征并对候选区域的位置和类别进行预测。这样每个预测框就可以看成是一个样本,根据真实框相对它的位置和类别进行了标注而获得标签值,通过网络模型预测其位置和类别,将网络预测值和标签值进行比较,就可以建立起损失函数。

        YOLOv3算法预测过程的流程图如下,预测图片经过一系列预处理(resize、normalization等)输入到YOLOv3模型,根据预先设定的Anchor和提取到的图片特征得到目标预测框,最后通过非极大值抑制(NMS)消除重叠较大的冗余预测框,得到最终预测结果。

YOLOv3网络结构大致分为3个部分:Backbone、Neck、Head:

  • Backbone:骨干网络,主要用于特征提取
  • Neck:在Backbone和Head之间提取不同阶段中特征图
  • Head:检测头,用于预测目标的类别和位置

产生候选区域

       如何产生候选区域,是检测模型的核心设计方案。目前大多数基于卷积神经网络的模型所采用的方式大体如下:

  • 按一定的规则在图片上生成一系列位置固定的锚框,将这些锚框看作是可能的候选区域。
  • 对锚框是否包含目标物体进行预测,如果包含目标物体,还需要预测所包含物体的类别,以及预测框相对于锚框位置需要调整的幅度。

生成锚框

        将原始图片划分成m×n个区域,如下图所示,原始图片高度H=640, 宽度W=480,如果我们选择小块区域的尺寸为32×3232×32,则m和n分别为:

                                                 m=32640​=20

                                                 n=32480​=15

                            

YOLOv3算法会在每个区域的中心,生成一系列锚框。

                             

在每个区域附近都生成3个锚框,很多锚框堆叠在一起可能不太容易看清楚,但过程跟上面类似,只是需要以每个区域的中心点为中心,分别生成3个锚框。

                              

生成预测框

在前面已经指出,锚框的位置都是固定好的,不可能刚好跟物体边界框重合,需要在锚框的基础上进行位置的微调以生成预测框。预测框相对于锚框会有不同的中心位置和大小,采用什么方式能得到预测框呢?我们先来考虑如何生成其中心位置坐标。

比如上面图中在第10行第4列的小方块区域中心生成的一个锚框,如绿色虚线框所示。以小方格的宽度为单位长度,

此小方块区域左上角的位置坐标是:

                cx​=4

                cy​=10

此锚框的区域中心坐标是:

              center_x=cx​+0.5=4.5

              center_y=cy​+0.5=10.5

可以通过下面的方式生成预测框的中心坐标:

              by​=cy​+σ(ty​)

其中tx​和ty​为实数,σ(x)是我们之前学过的Sigmoid函数,其定义如下:

              σ(x)=1+exp(−x)1​

由于Sigmoid的函数值在0∼10∼1之间,因此由上面公式计算出来的预测框的中心点总是落在第十行第四列的小区域内部。

当tx​=ty​=0时,bx​=cx​+0.5,by​=cy​+0.5,预测框中心与锚框中心重合,都是小区域的中心。

锚框的大小是预先设定好的,在模型中可以当作是超参数,下图中画出的锚框尺寸是

               ph​=350

               pw​=250

通过下面的公式生成预测框的大小:

              bh​=ph​eth​

              bw​=pw​etw​

如果tx​=ty​=0,th​=tw​=0,则预测框跟锚框重合。

如果给​,ty​,th​,tw​随机赋值如下:

              ℎ=−0.12tx​=0.2,ty​=0.3,tw​=0.1,th​=−0.12

则可以得到预测框的坐标是(154.98, 357.44, 276.29, 310.42)

对候选区域进行标注

真实框的中心点坐标是:

                    center_x=133.96

                    center_y=328.42

                    5=133.96/32=4.18625

                    j=328.42/32=10.263125

它落在了第10行第4列的小方块内,如所示。此小方块区域可以生成3个不同形状的锚框,其在图上的编号和大小分别是(373,326)A1​(116,90),A2​(156,198),A3​(373,326)。

用这3个不同形状的锚框跟真实框计算IoU,选出IoU最大的锚框。这里为了简化计算,只考虑锚框的形状,不考虑其跟真实框中心之间的偏移,具体计算结果如 下

其中跟真实框IoU最大的是锚框3​,形状是(373,326)(373,326),将它所对应的预测框的objectness标签设置为1,其所包括的物体类别就是真实框里面的物体所属类别。

依次可以找出其他几个真实框对应的IoU最大的锚框,然后将它们的预测框的objectness标签也都设置为1。这里一共有20×15×3=90020×15×3=900个锚框,只有3个预测框会被标注为正。

由于每个真实框只对应一个objectness标签为正的预测框,如果有些预测框跟真实框之间的IoU很大,但并不是最大的那个,那么直接将其objectness标签设置为0当作负样本,可能并不妥当。为了避免这种情况,YOLOv3算法设置了一个IoU阈值iou_threshold,当预测框的objectness不为1,但是其与某个真实框的IoU大于iou_threshold时,就将其objectness标签设置为-1,不参与损失函数的计算。

所有其他的预测框,其objectness标签均设置为0,表示负类。

对于objectness=1的预测框,需要进一步确定其位置和包含物体的具体分类标签,但是对于objectness=0或者-1的预测框,则不用管他们的位置和类别。

Backbone(特征提取)

       在检测任务中,将图中C0后面的平均池化、全连接层和Softmax去掉,保留从输入到C0部分的网络结构,作为检测模型的基础网络结构,也称为骨干网络。YOLOv3模型会在骨干网络的基础上,再添加检测相关的网络模块。

                   

下面的程序是Darknet53骨干网络的实现代码,这里将上图中C0、C1、C2所表示的输出数据取出,并查看它们的形状

import paddle
import paddle.nn.functional as F
import numpy as npclass ConvBNLayer(paddle.nn.Layer):def __init__(self, ch_in, ch_out, kernel_size=3, stride=1, groups=1,padding=0, act="leaky"):super(ConvBNLayer, self).__init__()self.conv = paddle.nn.Conv2D(in_channels=ch_in,out_channels=ch_out,kernel_size=kernel_size,stride=stride,padding=padding,groups=groups,weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0., 0.02)),bias_attr=False)self.batch_norm = paddle.nn.BatchNorm2D(num_features=ch_out,weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0., 0.02),regularizer=paddle.regularizer.L2Decay(0.)),bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.0),regularizer=paddle.regularizer.L2Decay(0.)))self.act = actdef forward(self, inputs):out = self.conv(inputs)out = self.batch_norm(out)if self.act == 'leaky':out = F.leaky_relu(x=out, negative_slope=0.1)return outclass DownSample(paddle.nn.Layer):# 下采样,图片尺寸减半,具体实现方式是使用stirde=2的卷积def __init__(self,ch_in,ch_out,kernel_size=3,stride=2,padding=1):super(DownSample, self).__init__()self.conv_bn_layer = ConvBNLayer(ch_in=ch_in,ch_out=ch_out,kernel_size=kernel_size,stride=stride,padding=padding)self.ch_out = ch_outdef forward(self, inputs):out = self.conv_bn_layer(inputs)return outclass BasicBlock(paddle.nn.Layer):"""基本残差块的定义,输入x经过两层卷积,然后接第二层卷积的输出和输入x相加"""def __init__(self, ch_in, ch_out):super(BasicBlock, self).__init__()self.conv1 = ConvBNLayer(ch_in=ch_in,ch_out=ch_out,kernel_size=1,stride=1,padding=0)self.conv2 = ConvBNLayer(ch_in=ch_out,ch_out=ch_out*2,kernel_size=3,stride=1,padding=1)def forward(self, inputs):conv1 = self.conv1(inputs)conv2 = self.conv2(conv1)out = paddle.add(x=inputs, y=conv2)return outclass LayerWarp(paddle.nn.Layer):"""添加多层残差块,组成Darknet53网络的一个层级"""def __init__(self, ch_in, ch_out, count, is_test=True):super(LayerWarp,self).__init__()self.basicblock0 = BasicBlock(ch_in,ch_out)self.res_out_list = []for i in range(1, count):# 使用add_sublayer添加子层res_out = self.add_sublayer("basic_block_%d" % (i), BasicBlock(ch_out*2,ch_out))self.res_out_list.append(res_out)def forward(self,inputs):y = self.basicblock0(inputs)for basic_block_i in self.res_out_list:y = basic_block_i(y)return y# DarkNet 每组残差块的个数,来自DarkNet的网络结构图
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}class DarkNet53_conv_body(paddle.nn.Layer):def __init__(self):super(DarkNet53_conv_body, self).__init__()self.stages = DarkNet_cfg[53]self.stages = self.stages[0:5]# 第一层卷积self.conv0 = ConvBNLayer(ch_in=3,ch_out=32,kernel_size=3,stride=1,padding=1)# 下采样,使用stride=2的卷积来实现self.downsample0 = DownSample(ch_in=32,ch_out=32 * 2)# 添加各个层级的实现self.darknet53_conv_block_list = []self.downsample_list = []for i, stage in enumerate(self.stages):conv_block = self.add_sublayer("stage_%d" % (i),LayerWarp(32*(2**(i+1)),32*(2**i),stage))self.darknet53_conv_block_list.append(conv_block)# 两个层级之间使用DownSample将尺寸减半for i in range(len(self.stages) - 1):downsample = self.add_sublayer("stage_%d_downsample" % i,DownSample(ch_in=32*(2**(i+1)),ch_out=32*(2**(i+2))))self.downsample_list.append(downsample)def forward(self,inputs):out = self.conv0(inputs)#print("conv1:",out.numpy())out = self.downsample0(out)#print("dy:",out.numpy())blocks = []#依次将各个层级作用在输入上面for i, conv_block_i in enumerate(self.darknet53_conv_block_list): out = conv_block_i(out)blocks.append(out)if i < len(self.stages) - 1:out = self.downsample_list[i](out)return blocks[-1:-4:-1] # 将C0, C1, C2作为返回值

 Neck(多尺度检测)

        如果只在在特征图P0的基础上进行的,它的步幅stride=32。特征图的尺寸比较小,像素点数目比较少,每个像素点的感受野很大,具有非常丰富的高层级语义信息,可能比较容易检测到较大的目标。为了能够检测到尺寸较小的那些目标,需要在尺寸较大的特征图上面建立预测输出。如果我们在C2或者C1这种层级的特征图上直接产生预测输出,可能面临新的问题,它们没有经过充分的特征提取,像素点包含的语义信息不够丰富,有可能难以提取到有效的特征模式。在目标检测中,解决这一问题的方式是,将高层级的特征图尺寸放大之后跟低层级的特征图进行融合,得到的新特征图既能包含丰富的语义信息,又具有较多的像素点,能够描述更加精细的结构。

YOLOv3在每个区域的中心位置产生3个锚框,在3个层级的特征图上产生锚框的大小分别为P2 [(10×13),(16×30),(33×23)],P1 [(30×61),(62×45),(59× 119)],P0[(116 × 90), (156 × 198), (373 × 326]。越往后的特征图上用到的锚框尺寸也越大,能捕捉到大尺寸目标的信息;越往前的特征图上锚框尺寸越小,能捕捉到小尺寸目标的信息。

检测头设计(计算预测框位置和类别)

YOLOv3中对每个预测框计算逻辑如下:

  • 预测框是否包含物体。也可理解为objectness=1的概率是多少,可以用网络输出一个实数 x,可以用 Sigmoid(x)表示objectness为正的概率 Pobj​

  • 预测物体位置和形状。物体位置和形状 tx​,ty​,tw​,th​可以用网络输出4个实数来表示 tx​,ty​,tw​,th​

  • 预测物体类别。预测图像中物体的具体类别是什么,或者说其属于每个类别的概率分别是多少。总的类别数为C,需要预测物体属于每个类别的概率 (P1​,P2​,...,PC​),可以用网络输出C个实数 (x1​,x2​,...,xC​),对每个实数分别求Sigmoid函数,让 Pi​=Sigmoid(xi​),则可以表示出物体属于每个类别的概率。

对于一个预测框,网络需要输出 (5+C)个实数来表征它是否包含物体、位置和形状尺寸以及属于每个类别的概率。

       由于我们在每个小方块区域都生成了K个预测框,则所有预测框一共需要网络输出的预测值数目是:

                [K(5+C)]×m×n

还有更重要的一点是网络输出必须要能区分出小方块区域的位置来,不能直接将特征图连接一个输出大小为[K(5+C)]×m×n的全连接层。

建立输出特征图与预测框之间的关联

现在观察特征图,经过多次卷积核池化之后,其步幅stride=32,640×480640×480大小的输入图片变成了20×1520×15的特征图;而小方块区域的数目正好是20×1520×15,也就是说可以让特征图上每个像素点分别跟原图上一个小方块区域对应。这也是为什么我们最开始将小方块区域的尺寸设置为32的原因,这样可以巧妙的将小方块区域跟特征图上的像素点对应起来,解决了空间位置的对应关系。

下面需要将像素点(i,j)与第i行第j列的小方块区域所需要的预测值关联起来,每个小方块区域产生K个预测框,每个预测框需要(5+C)个实数预测值,则每个像素点相对应的要有K(5+C)个实数。为了解决这一问题,对特征图进行多次卷积,并将最终的输出通道数设置为K(5+C),即可将生成的特征图与每个预测框所需要的预测值巧妙的对应起来。当然,这种对应是为了将骨干网络提取的特征对接输出层来形成Loss。实际中,这几个尺寸可以随着任务数据分布的不同而调整,只要保证特征图输出尺寸(控制卷积核和下采样)和输出层尺寸(控制小方块区域的大小)相同即可。

骨干网络的输出特征图是C0,下面的程序是对C0进行多次卷积以得到跟预测框相关的特征图P0。


class YoloDetectionBlock(paddle.nn.Layer):# define YOLOv3 detection head# 使用多层卷积和BN提取特征def __init__(self,ch_in,ch_out,is_test=True):super(YoloDetectionBlock, self).__init__()assert ch_out % 2 == 0, \"channel {} cannot be divided by 2".format(ch_out)self.conv0 = ConvBNLayer(ch_in=ch_in,ch_out=ch_out,kernel_size=1,stride=1,padding=0)self.conv1 = ConvBNLayer(ch_in=ch_out,ch_out=ch_out*2,kernel_size=3,stride=1,padding=1)self.conv2 = ConvBNLayer(ch_in=ch_out*2,ch_out=ch_out,kernel_size=1,stride=1,padding=0)self.conv3 = ConvBNLayer(ch_in=ch_out,ch_out=ch_out*2,kernel_size=3,stride=1,padding=1)self.route = ConvBNLayer(ch_in=ch_out*2,ch_out=ch_out,kernel_size=1,stride=1,padding=0)self.tip = ConvBNLayer(ch_in=ch_out,ch_out=ch_out*2,kernel_size=3,stride=1,padding=1)def forward(self, inputs):out = self.conv0(inputs)out = self.conv1(out)out = self.conv2(out)out = self.conv3(out)route = self.route(out)tip = self.tip(route)return route, tip

如上面的代码所示,可以由特征图C0生成特征图P0,P0的形状是[1,36,20,20][1,36,20,20]。每个小方块区域生成的锚框或者预测框的数量是3,物体类别数目是7,每个区域需要的预测值个数是3×(5+7)=363×(5+7)=36,正好等于P0的输出通道数。

将P0[t,0:12,i,j]与输入的第t张图片上小方块区域(i,j)第1个预测框所需要的12个预测值对应,]P0[t,12:24,i,j]与输入的第t张图片上小方块区域(i,j)第2个预测框所需要的12个预测值对应,P0[t,24:36,i,j]与输入的第t张图片上小方块区域(i,j)第3个预测框所需要的12个预测值对应。

P0[t,0:4,i,j]与输入的第t张图片上小方块区域(i,j)第1个预测框的位置对应,P0[t,4,i,j]与输入的第t张图片上小方块区域(i,j)第1个预测框的objectness对应,P0[t,5:12,i,j]与输入的第t张图片上小方块区域(i,j)第1个预测框的类别对应。

损失函数

上面从概念上将输出特征图上的像素点与预测框关联起来了,那么要对神经网络进行求解,还必须从数学上将网络输出和预测框关联起来,也就是要建立起损失函数跟网络输出之间的关系。下面讨论如何建立起YOLOv3的损失函数。

对于每个预测框,YOLOv3模型会建立三种类型的损失函数:

  • 表征是否包含目标物体的损失函数,通过pred_objectness和label_objectness计算。

  • 表征物体位置的损失函数,通过pred_location和label_location计算。

  • 表征物体类别的损失函数,通过pred_classification和label_classification计算。

总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/292804.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RTP/RTCP/RTSP/SIP/SDP/RTMP对比

RTP&#xff08;Real-time Transport Protocol&#xff09;是一种用于实时传输音频和视频数据的协议。它位于传输层和应用层之间&#xff0c;主要负责对媒体数据进行分包、传输和定时。 RTCP&#xff08;Real-Time Control Protocol&#xff09;是 RTP 的控制协议&#xff0c;…

SSM整合实战(Spring、SpringMVC、MyBatis)

五、SSM整合实战 目录 一、SSM整合理解 1. 什么是SSM整合&#xff1f;2. SSM整合核心理解五连问&#xff01; 2.1 SSM整合涉及几个IoC容器&#xff1f;2.2 每个IoC容器盛放哪些组件&#xff1f;2.3 IoC容器之间是什么关系&#xff1f;2.4 需要几个配置文件和对应IoC容器关系&…

【C语言】自定义类型:结构体深入解析(二)结构体内存对齐宏offsetof计算偏移量结构体传参

文章目录 &#x1f4dd;前言&#x1f320; 结构体内存对齐&#x1f309;内存对齐包含结构体的计算&#x1f320;宏offsetof计算偏移量&#x1f309;为什么存在内存对⻬?&#x1f320; 结构体传参&#x1f6a9;总结 &#x1f4dd;前言 本小节&#xff0c;我们学习结构的内存对…

阳台局部改造,这4个步骤一个都不能少!福州中宅装饰,福州装修

亲爱的读者们&#xff0c;你们是否曾经梦想过对自己的阳台进行一次彻底的改造&#xff0c;让它在你的家中成为一个令人舒适和享受的角落呢&#xff1f;如果你对此感兴趣&#xff0c;那么我就带你走进阳台装修改造的的世界&#xff0c;一步步了解如何将你的阳台变成梦想中的小天…

rtsp视频在使用unity三维融合播放后的修正

1 rtsp 接入 我们使用unity UE 等三维渲染引擎中使用c编写插件来接入rtsp 视频。同时做融合的时候&#xff0c;和背景的三维颜色要一致&#xff0c;这就要使用视频融合修正技术。包括亮度&#xff0c;对比度&#xff0c;饱和度的修正。在单纯颜色上的修正可以简单使用rgb->…

JavaScript读写15693 ICod2 卡源码

本示例使用设备 &#xff1a; https://item.taobao.com/item.htm?spma1z10.5-c-s.w4002-21818769070.11.23eb789efg450Y&id615391857885 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-t…

无头 SEO:技术实施的 8 个基本步骤

确保您的内容在无头 CMS 环境中大放异彩。按照我们的 8 个步骤进行一流的无头 SEO。 无头内容管理系统 &#xff08;CMS&#xff09; 正在兴起&#xff0c;迅速被宜家、耐克和国家地理等大品牌采用。 那里有很多选择&#xff0c;而且更有可能的是&#xff0c;作为 SEO 专业人士…

宝塔+Let‘s Encrypt给网站安装免费SSL证书

文件验证老是不通过&#xff0c;遂选择DNS验证&#xff1a; DNS验证也不过&#xff0c;发现腾讯云DNS解析的时候填写不能填宝塔页面给的完整的“解析域名”内容&#xff0c;只需填前面一部分就行了&#xff1a; ref: https://cloud.tencent.com/document/product/302/54454

非隔离恒压ACDC稳压智能电源模块芯片推荐:SM7015

非隔离恒压ACDC稳压智能电源模块芯片是一种用于将交流&#xff08;AC&#xff09;电源转换为直流&#xff08;DC&#xff09;电源的集成电路。这种芯片具有恒压输出功能&#xff0c;能够保持输出电压的稳定&#xff0c;适用于各种需要直流电源的应用场景。 非隔离电源模块通常…

SQL 多字段条件查询

SQL 多字段条件查询 一个数据库表&#xff0c;几十个字段&#xff0c;查找任意字段里包含北京的记录&#xff0c;在 mysql 里这句 sql 应该是这样&#xff1a; SELECT * FROM table WHERE concat(field1,field2,field3……fieldn) like ‘% 北京 %’ 反正是少不了将几十个字…

Angular 进阶之五: Signals到底用不用?

Angular 在V16的时候推出了Signals&#xff0c;在17正式作为主打功能之一强烈推荐&#xff0c;看过了各种博主的各种科普文章也没说明白&#xff0c;到底这东西值不值得用&#xff1f;毕竟项目大了&#xff0c;重构代码也不是闹着玩儿的。各种科普文章主要在说两点&#xff1a;…

Docker可视化界面【Portainer】安装

Portainer是一个可视化的容器镜像的图形管理工具&#xff0c;利用Portainer可以轻松构建&#xff0c;管理和维护Docker环境。 而且完全免费&#xff0c;基于容器化的安装方式&#xff0c;方便高效部署。 一、拉取镜像 docker pull portainer/portainer 二、运行portainer容…