用C#也能做机器学习?

前言✨

说到机器学习,大家可能都不陌生,但是用C#来做机器学习,可能很多人还第一次听说。其实在C#中基于ML.NET也是可以做机器学习的,这种方式比较适合.NET程序员在项目中集成机器学习模型,不太适合专门学习机器学习,本文我将基于ML.NET Model Builder(低代码、入门简单)构建一个猫狗识别实例,并在.NET应用中集成它。

效果✨

效果如下所示:

猫狗识别效果

目录✨

  1. ML.NET简介
  2. ML.NET Model Builder简介
  3. 数据集准备
  4. 添加机器学习模型
  5. 选择方案
  6. 选择训练环境
  7. 添加数据
  8. 训练
  9. 评估模型
  10. 在.NET应用中使用模型
  11. 总结

ML.NET简介✨

ML.NET 是由 Microsoft 为 .NET 开发者平台创建的免费、开源、跨平台的机器学习框架。

ML.NET,无需离开 .NET 生态系统,便可以使用 C# 或 F# 创建自定义 ML 模型。

ML.NET 提供 Model Builder(简单的 UI 工具)和 ML.NET CLI,使生成自定义 ML 模型变得非常容易。

ML.NET 被设计为一个可扩展平台,因此可以使用其他流行的 ML 框架(TensorFlow、ONNX、Infer.NET 等)并访问更多机器学习场景,如图像分类、物体检测等。

image-20231220210642734

ML.NET Model Builder简介✨

Model Builder 提供易于理解的可视界面,用于在 Visual Studio 内生成、训练和部署自定义机器学习模型。无需先前的机器学习专业知识。

Model Builder 支持 AutoML,它会自动探索不同的机器学习算法和设置,以帮助找到最适合方案的算法和设置。

Model Builder 的当前预览版可用于 csv 文件、tsv 文件以及 SQL Server 数据库。

Model Builder 可生成经过训练的模型,以及加载模型和开始进行预测所需的代码。

Model Builder 为你提供计算机上所需的一切功能。不需要连接到云资源或其他服务即可生成和使用模型。

Model Builder 是一个 Visual Studio 扩展,便于你在已知的开发环境中继续工作。

Model Builder 可用于在 Visual Studio 中开发的任何 .NET 应用。

image-20231221103403282

数据集准备✨

本文使用的数据集,来源于kaggle,共包含25000张JPEG数据集照片,其中猫和狗的照片各占12500张。

下载地址:https://www.kaggle.com/c/dogs-vs-cats/data

将压缩包解压,有test1.zip与train.zip,再分别解压得到test1与train文件夹:

image-20231220221657444

在train文件夹中各有12500张猫的图片和狗的图片,本示例不用那么多的图片,分别选取2500张的猫和狗的图片。

添加机器学习模型✨

右键解决方案,新建一个类库,命名为IdentifyDogsAndCats:

image-20231220222726459

右键该类库,添加机器学习模型:

image-20231220222911054

命名为IdentifyDogsAndCats.mbconfig,然后会跳出如下界面:

image-20231220223109571

选择方案✨

本文中的猫狗识别,属于计算机视觉中的图像分类,因此选择该方案:

image-20231220223329503

选择训练环境✨

本文只是示例,选择本地(CPU):

image-20231220223412642

添加数据✨

添加数据需要选择一个文件夹,文件夹的结构示例,如右侧所示:

image-20231220223727032

像右侧所示这样组织文件:

image-20231221090614621

先创建一个名为猫狗图片的文件夹然后在里面再分别添加一个命名为狗和猫的文件夹,在里面各添加2500张图片。

在狗文件夹中添加狗的图片:

image-20231221090811257

在猫文件夹中添加猫的图片:

image-20231221091034432

训练模型✨

开始训练:

image-20231220210411840

需要等待一定的时间。

训练完成:

image-20231220212720758

评估模型✨

image-20231220213352174

image-20231220213451843

image-20231220213534280

在.NET应用中使用模型✨

训练完成后,在解决方案的mbconfig下生成了三个文件:

image-20231221092356947

IdentifyDogsAndCats.consumption.cs: 此文件包含模型输入和输出类以及可用于模型消耗的 Predict 方法。

IdentifyDogsAndCats.mlnet: 该文件是经过训练的 ML.NET 模型,它是一个序列化的 zip 文件。

IdentifyDogsAndCats.training.cs: 此文件包含用于了解输入列对模型预测的重要性的代码。

在应用台程序中集成该模型✨

创建一个控制台应用:

image-20231221092839597

添加项目依赖:

右键TestModel,选择“添加项目引用”。

image-20231221092945301

选择包含模型的类库:

image-20231221093034754

将Program.cs中的代码替换为如下代码:

using Model = IdentifyDogsAndCats;
namespace TestModel
{internal class Program{static void Main(string[] args){//Load sample datavar imageBytes = File.ReadAllBytes(@"D:\学习路线\C#\ML.NET\IdentifyDogsAndCats\test1\21.jpg");Model.IdentifyDogsAndCats.ModelInput sampleData = new(){ImageSource = imageBytes,};//Load model and predict outputvar result = Model.IdentifyDogsAndCats.Predict(sampleData);//输出结果Console.WriteLine(result.PredictedLabel);}}

开始运行:

image-20231221102750438

image-20231221102810219

查看这张图片:

image-20231221102839318

在winform中集成该模型✨

添加一个winform项目,右键添加项目引用:

image-20231221103159329

为了便于演示,设计页面如下:

image-20231221104030480

Form1.cs中代码如下:

namespace WinFormsApp1
{public partial class Form1 : Form{string selectedImagePath;public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();// 设置对话框的标题openFileDialog.Title = "选择图片文件";// 设置对话框初始目录openFileDialog.InitialDirectory = @"D:\学习路线\C#\ML.NET\IdentifyDogsAndCats\test1";// 设置对话框允许选择的文件类型openFileDialog.Filter = "图片文件|*.jpg;*.jpeg;*.png;*.gif;*.bmp|所有文件|*.*";// 如果用户点击了“确定”按钮if (openFileDialog.ShowDialog() == DialogResult.OK){// 获取选择的文件路径selectedImagePath = openFileDialog.FileName;// 在这里可以使用selectedImagePath进行后续操作,比如显示图片到窗体上pictureBox1.Image = new Bitmap(selectedImagePath);}}private void button2_Click(object sender, EventArgs e){//Load sample datavar imageBytes = File.ReadAllBytes(selectedImagePath);IdentifyDogsAndCats.IdentifyDogsAndCats.ModelInput sampleData = new(){ImageSource = imageBytes,};//Load model and predict outputvar result = IdentifyDogsAndCats.IdentifyDogsAndCats.Predict(sampleData);//提示识别是否完成MessageBox.Show($"识别已完成,识别结果为:{result.PredictedLabel}");//将结果显示在label1上label1.Text = result.PredictedLabel;}private void Form1_Load(object sender, EventArgs e){}}
}

运行效果如下所示:

猫狗识别效果

可见第一次识别确实久一点,但是后面识别挺快的。

运行效果截图:

image-20231221111125031

image-20231221110957744

总结✨

本文先是简单介绍了ML.NETML.NET Model Builder,其次基于ML.NET Model Builder构建了一个猫狗识别的机器学习模型实例,最后在.NET项目中集成了它。

总体流程图如下所示:

image-20231221120437686

希望对你有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/293029.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GNSS技术在城市规划中的革新:精准定位引领智慧城市发展

随着城市化的快速推进,城市规划愈发关键,而全球导航卫星系统(GNSS)技术的广泛应用正为城市规划带来一场前所未有的变革。本文将深入探讨GNSS模块在城市规划中的多重应用,以及如何通过精准定位推动智慧城市的发展。 城市…

【Python小知识 - 6】:QLabel设置图片

文章目录 QLabel设置图片 QLabel设置图片 from PyQt5.QtWidgets import * from PyQt5.QtGui import * import sysapp QApplication(sys.argv)window QWidget()hbox QHBoxLayout(window)# 设置标签图片 lable QLabel() lable.setPixmap(QPixmap(./img/window.png).scaled(1…

【ARM Cortex-M 系列 5 -- RT-Thread renesas/ra4m2-eco 移植编译篇】

文章目录 RT-Thread 移植编译篇编译os.environ 使用示例os.putenv使用示例python from 后指定路径 编译问题_POSIX_C_SOURCE 介绍编译结果 RT-Thread 移植编译篇 本文以瑞萨的ra4m2-eco 为例介绍如何下载rt-thread 及编译的设置。 RT-Thread 代码下载: git clone …

听GPT 讲Rust源代码--src/tools(22)

File: rust/src/tools/tidy/src/lib.rs rust/src/tools/tidy/src/lib.rs是Rust编译器源代码中tidy工具的实现文件之一。tidy工具是Rust项目中的一项静态检查工具,用于确保代码质量和一致性。 tidy工具主要有以下几个作用: 格式化代码:tidy工具…

12.21_黑马数据结构与算法笔记Java

//最近在复习,,java的进度会比较慢一些 目录 219 排序算法 基数排序2 220 排序算法 java排序 221 排序 e01 根据另一个数组次序排序 222 排序 e02 根据出现频率排序 thinking:关于比较器 223 排序 e03 最大间距 解法1(超出内…

【图神经网络 · 科研笔记5】异构信息网络,利用注意力选择元路径;利用进化邻域和社群实现自监督动态图嵌入,交叉监督对比学习;近期科研思维导图小汇总;

记录部分科研文献阅读相关内容【划重点】,主题“图神经网络”,仅学习使用。 🎯作者主页: 追光者♂🔥 🌸个人简介: 📝[1] CSDN 博客专家📝 🏆[2] 人工智能领域优质创作者🏆 🌟[3] 2023年城市之星领跑者TOP1(哈尔滨)🌿 🌿[4] 2022年度…

ACM32G1x3有那些优势?适用于那些产品上?

ACM32G1x3优势 • 320KB 程序Flash64KB SRAM,跑RTOS程序开发更加方便 • 从外挂Flash通过DMA搬运图片数据到PSRAM,无需打断程序运行 • 120MHz M33内核,处理性能佳 • 集成2路CAN接口,适合工控等需要CAN接口的场景 • QS…

SpringSecurity深度解析与实践(2)

目录 引言1.Springboot结合SpringSecurity用户认证流程1.1 配置pom文件1.2.配置application.yml 2.自定义MD5加密3.BCryptPasswordEncoder密码编码器4.RememberMe记住我的实现5.CSRF防御5.1.什么是CSRF 引言 上篇网址 1.Springboot结合SpringSecurity用户认证流程 1.1 配置p…

在x64上构建智能家居(home assistant)(二)(新版Debain12)连接Postgresql数据库

新版数据库安装基本和旧版相同,大部分可以参考旧版本在x64上构建智能家居(home assistant)(二)连接Postgresql数据库_homeassist 数据库-CSDN博客 新版本的home assistant系统安装,我在原来写的手顺上直接修改了,需要的可以查看在x64上构建智能家居(home…

Appium安装及配置

一、前置说明 Appium 是一个用于自动化移动应用程序的开源测试框架,它支持 Android 和 iOS,同时支持使用多种编程语言(如 Java、Python、JavaScript 等)进行测试脚本的编写。 二、操作步骤 1. 安装Node.js Appium Server 由 n…

sql之按时间段查询时间段(时间段取交集)

在一些需求中,可能会出现按时间段查询时间段的逻辑,也就是说前端传的有一个开始时间和一个结束时间参数,数据库中也有一个开始时间和一个结束时间字段,我们需要取这两者的交集。 那么一开始会想着把所有的情况的条件都写到sql中&…