智能优化算法应用:基于鹰栖息算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鹰栖息算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鹰栖息算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鹰栖息算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鹰栖息算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鹰栖息算法

鹰栖息算法原理请参考:https://blog.csdn.net/u011835903/article/details/123363341
鹰栖息算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鹰栖息算法参数如下:

%% 设定鹰栖息优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明鹰栖息算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/293625.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】递归与分治

一.递归 1.递归的概念: 子程序(或函数). 接调用自己或通过一系列调用语句间接调用自己,成为递归。 递归是一种描述问题和解决问题的基本方法。 重复地把问题转化为与原问题相似的新问题,直到问题解决为止。 2.递归…

面试 Java 算法高频题五问五答第二期

面试 Java 算法高频题五问五答第二期 作者:程序员小白条,个人博客 相信看了本文后,对你的面试是有一定帮助的! ⭐点赞⭐收藏⭐不迷路!⭐ 寻找峰值: 主要思想:二分查找,利用get函数&#xff0…

基于ssm+jsp理发店管理系统源码和论文

随着信息化时代的到来,管理系统都趋向于智能化、系统化,理发店管理系统也不例外,但目前国内的市场仍都使用人工管理,市场规模越来越大,同时信息量也越来越庞大,人工管理显然已无法应对时代的变化&#xff0…

经纬恒润参建龙拱港项目荣获5G“绽放杯”全国赛一等奖

近日,第六届“绽放杯”5G应用征集大赛全国总决赛在上海落幕。济宁港航龙拱港联合经纬恒润、济宁移动、中兴通讯共同打造的“5G专网赋能江北内河最大的集装箱示范港建设”项目,从全国4万多个优秀项目案例中脱颖而出,荣获全国赛区一等奖&#x…

算法通关村-番外篇排序算法

大家好我是苏麟 , 今天带来番外篇 . 冒泡排序 BubbleSort 最基本的排序算法&#xff0c;最常用的排序算法 . 我们以关键字序列{26,53,48,11,13,48,32,15}看一下排序过程: 代码如下 : (基础版) class Solution {public int[] sortArray(int[] nums) {for(int i 0;i < n…

医院手术麻醉系统源码,基于PHP、 js 、mysql、laravel、vue2技术开发,实现患者数据的自动采集和医疗文书自动生成

手麻系统作为医院信息化系统的一环&#xff0c;由监护设备数据采集系统和麻醉信息管理系统两个子部分组成。手麻信息系统覆盖了患者术前、术中、术后的手术过程&#xff0c;可以实现麻醉信息的电子化和手术麻醉全过程动态跟踪。 以服务围术期临床业务工作的开展为核心&#xf…

【计算机系统结构实验】实验4 向量扩展指令和编程

4.1 实验目的 理解向量的处理方法&#xff1b;掌握X86体系中MMX/SSE/AVX指令集进行编程的基本方法。理解SIMD指令含义及原理&#xff0c;了解Kunpeng数学库的安装与使用 4.2 实验平台 需要x86计算机和微软编程工具Visual Studio 2012。Taishan服务器&#xff0c;安装openEul…

解决找不到vcruntime140.dll无法继续执行的多种方法分享

最近&#xff0c;我在使用电脑时遇到了一个问题&#xff0c;即“由于找不到vcruntime140.dll无法继续执行”。vcruntime140.dll是Visual C Redistributable Packages中的一个组件&#xff0c;它是Visual Studio 2015中运行C程序所必需的。如果找不到vcruntime140.dll文件&#…

PostgreSQL从入门到精通教程 - 第39讲:数据库完全恢复

PostgreSQL从小白到专家&#xff0c;是从入门逐渐能力提升的一个系列教程&#xff0c;内容包括对PG基础的认知、包括安装使用、包括角色权限、包括维护管理、、等内容&#xff0c;希望对热爱PG、学习PG的同学们有帮助&#xff0c;欢迎持续关注CUUG PG技术大讲堂。 第39讲&#…

JavaScript高级 构造函数与原型篇

构造函数与原型 1、构造函数 构造函数是一种特殊的函数&#xff0c;主要用来初始化对象&#xff0c;即为对象成员变量赋初始值&#xff0c;它总与new一起使用。我们可以把对象中一些公共的属性和方法抽取出来&#xff0c;然后封装到这个函数里面。 // 定义学生构造函数func…

微信小程序开发系列-02注册小程序

上一篇文章&#xff0c;创建了一个最小的小程序&#xff0c;但是&#xff0c;还有3个疑问没有弄清楚&#xff0c;还是基于demo1工程&#xff0c;这篇文章继续探索。 当前的目录结构是否是完备的呢&#xff1f;&#xff08;虽然小程序可以运行起来&#xff09;app.js文件内容还…

Springboot是什么?Springboot详解!入门介绍

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化&#xff0c;文章内容兼具广度、深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于…