Leetcode算法系列| 4. 寻找两个正序数组的中位数

目录

  • 1.题目
  • 2.题解
    • C# 解法一:合并List根据长度找中位数
    • C# 解法二:归并排序后根据长度找中位数
    • C# 解法三:方法二的优化,不真实添加到list
    • C# 解法四:第k小数
    • C# 解法五:从中位数的概念定义入手

1.题目

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n))

  • 示例1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
  • 示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
  • 提示:
    • nums1.length == m
    • snums2.length == n
    • 0 <= m <= 1000
    • 0 <= n <= 1000
    • 1 <= m + n <= 2000
    • -10^6 <= nums1[i], nums2[i] <= 10^6

2.题解

C# 解法一:合并List根据长度找中位数

  • 提new 一个 List , 并将 nums1 和 nums2 都添加到list 中,然后进行排序。对于排序后的 list, 根据长度计算出中位数的index,进而计算出最终结果。假设合并后的list长度为13,则从小到大第7个数字为中位数,resultIndex=6;假设合并后的list长度为14,则从小到大第7,8个数字的平均值为中位数,index 分别为 6,7,此时resultIndex =7,resultIndex-1 =6 , 结果为 ( list[resultIndex-1] + list[resultIndex] ) / 2.0 ;
public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){int m = nums1.Length;int n = nums2.Length;int len = m + n;var resultIndex = len / 2;List<int> list = new List<int>(nums1);list.AddRange(nums2);list.Sort();if (len % 2 == 0){return (list[resultIndex - 1] + list[resultIndex]) / 2.0;}else{return list[resultIndex];}}
}

1

  • 时间复杂度:O( (m+n)(1+log(m+n) ))
    • 将长度为m,n的两个数组添加到list,复杂度分别为常数级的m和n ;list.Sort()的复杂度根据官方文档可得为 (m+n)log(m+n),所以该方法时间复杂度为 O( m+n+(m+n)log(m+n) ) = O( (m+n)(1+log(m+n) ))
  • 空间复杂度:O(m+n)
    • 使用list的长度为m+n.

C# 解法二:归并排序后根据长度找中位数

  • 方法一使用了list.Sort() 方法,可以对list进行排序,但是,若题目给出的nums1 和 nums2 是无序数组,使用 list.Sort() 才算是 物有所用。 本题中 nums1 和 nums2 是有序数组,所以使用 list.Sort() 有写 杀鸡用宰牛刀的感觉,换句话说,这里面存在着效率的浪费。我们可以利用 【nums1 和 nums2 是有序数组】 这个条件,来精简我们的排序。
public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){// nums1 与 nums2 有序添加到list中List<int> list = new List<int>();int i = 0, j = 0;int m = nums1.Length;int n = nums2.Length;int len = m + n;var resultIndex = len / 2;while (i < m && j < n){if (nums1[i] < nums2[j])list.Add(nums1[i++]);elselist.Add(nums2[j++]);}while (i < m) list.Add(nums1[i++]);while (j < n) list.Add(nums2[j++]);if (len % 2 == 0){return (list[resultIndex - 1] + list[resultIndex]) / 2.0;}else{return list[resultIndex];}}
}

2

  • 时间复杂度:O(m+n)
    • i 和 j 一起把长度为 m 和 n 的两个数组遍历了一遍,所以时间复杂度为 O(m+n)
  • 空间复杂度:O(m+n)
    • 使用list的长度为m+n.

C# 解法三:方法二的优化,不真实添加到list

  • 对于方法二,我们在已知 resultIndex 的情况下,也可以不把 nums1 和 nums2 真实添加到 list 中,只需要在i 和 j 不断向右移动的过程中,计算是否到达了 resultIndex 即可。 若到达了 resultIndex,可以直接返回结果,而不必再处理后面的数据。但是相对的,我们需要在 i 或者 j 向右移动时,判断是否到达了resultIndex.
public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){int i = 0, j = 0, m = nums1.Length, n = nums2.Length;int len = m + n;int resultIndex = len / 2;int resultIndexPre = resultIndex - 1;int result = 0, resultPre = 0;  bool isTwoResult = len % 2 == 0;while (i < m || j < n){var nums1ii = i < m ? nums1[i] : int.MaxValue;var nums2jj = j < n ? nums2[j] : int.MaxValue;if (nums1ii < nums2jj){if (i + j == resultIndexPre) resultPre = nums1[i];if (i + j == resultIndex){result = nums1[i];if (isTwoResult) return (resultPre + result) / 2.0;else return result;}i++;}else{if (i + j == resultIndexPre) resultPre = nums2[j];if (i + j == resultIndex){result = nums2[j];if (isTwoResult) return (resultPre + result) / 2.0;else return result;}j++;}}return 0;}
}

在这里插入图片描述

  • 时间复杂度:O(m+n)
    • i 和 j 一起把长度为 m 和 n 的两个数组遍历了一半,但是每一步都需要判断当前i+j的值是否等于resultIndex,所以时间复杂度仍可认为 O(m+n)
  • 空间复杂度:O(1)
    • 对比方法二,不再使用list,只使用了几个变量来存值,所以空间复杂度为O(1)

C# 解法四:第k小数

  • 前面的几种方法,时间复杂度都没有达到题目要求的 O(log(m+n)) 。 看到log,很明显需要使用二分法。根据 windliang提供的思路,题目求中位数,实际上是求第 k 小数的一种特殊情况,而求第 k 小数 有一种算法。

方法三中,i 和 j 每次向右移动一位时,相当于去掉了一个不可能是中位数的值,也就是一个一个的排除。由于给定的两个数组是有序的,所以我们完全可以一半一半的排除。假设我们要找第 k 小数,我们每次循环可以安全的排除掉 k/2 个数。

public class Solution {public double FindMedianSortedArrays(int[] nums1, int[] nums2){int n = nums1.Length;int m = nums2.Length;int len = n + m;int kPre = (len + 1) / 2;int k = (len + 2) / 2;if (len % 2 == 0)return (GetKth(nums1, 0, n - 1, nums2, 0, m - 1, kPre) + GetKth(nums1, 0, n - 1, nums2, 0, m - 1, k)) * 0.5;elsereturn GetKth(nums1, 0, n - 1, nums2, 0, m - 1, k);}private int GetKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k){int len1 = end1 - start1 + 1;int len2 = end2 - start2 + 1;//让 len1 的长度小于 len2,这样就能保证如果有数组空了,一定是 len1 if (len1 > len2) return GetKth(nums2, start2, end2, nums1, start1, end1, k);if (len1 == 0) return nums2[start2 + k - 1];if (k == 1) return Math.Min(nums1[start1], nums2[start2]);int i = start1 + Math.Min(len1, k / 2) - 1;int j = start2 + Math.Min(len2, k / 2) - 1;if (nums1[i] > nums2[j])return GetKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));elsereturn GetKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));}
}

1

  • 时间复杂度:O(log(m+n))
    • i每进行依次循环,就减少 k/2个元素,所以时间复杂度为 O(log(k)) , 而 k = (m+n)/2 , 所以最终复杂度是 O(log(m+n))
  • 空间复杂度:O(1)
    • 只使用了几个变量来存值,递归是尾递归不占用堆栈, 所以空间复杂度为O(1)

C# 解法五:从中位数的概念定义入手

  • 该方法参考了 LeetCode 题解的 官方题解 以及 windliang 的题解。
    首先我们来看一下百度百科中位数的定义:https://baike.baidu.com/item/%E4%B8%AD%E4%BD%8D%E6%95%B0/3087401?fr=aladdin
public class Solution {public double FindMedianSortedArrays(int[] A, int[] B){int m = A.Length;int n = B.Length;//保证第一个数组是较短的if (m > n) return FindMedianSortedArrays(B, A);//正在寻找的范围为 [ A[iMin],A[iMax] ) , 左闭右开。二分查找取i=(iMin+iMax)/2int iMin = 0, iMax = m;while (iMin <= iMax){int i = (iMin + iMax) / 2;int j = (m + n + 1) / 2 - i;if (j != 0 && i != m && B[j - 1] > A[i]){ // i 需要增大iMin = i + 1;}else if (i != 0 && j != n && A[i - 1] > B[j]){ // i 需要减小iMax = i - 1;}else{ // 达到要求,并且将边界条件列出来单独考虑int maxLeft = 0;if (i == 0) { maxLeft = B[j - 1]; }else if (j == 0) { maxLeft = A[i - 1]; }else { maxLeft = Math.Max(A[i - 1], B[j - 1]); }if ((m + n) % 2 == 1) { return maxLeft; } // 奇数的话不需要考虑右半部分int minRight = 0;if (i == m) { minRight = B[j]; }else if (j == n) { minRight = A[i]; }else { minRight = Math.Min(B[j], A[i]); }return (maxLeft + minRight) / 2.0; //如果是偶数的话返回结果}}return 0.0;}
}

5

  • 时间复杂度:O(log(min(m,n))
    • 我们对较短的数组进行了二分查找,所以时间复杂度是 O(log(min(m,n))
  • 空间复杂度:O(1)
    • 只使用了几个变量来存值,所以空间复杂度为O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/295275.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JMeter】JMeter控制RPS

一、前言 ​ RPS (Request Per Second)一般用来衡量服务端的吞吐量&#xff0c;相比于并发模式&#xff0c;更适合用来摸底服务端的性能。我们可以通过使用 JMeter 的常数吞吐量定时器来限制每个线程的RPS。对于RPS&#xff0c;我们可以把他理解为我们的TPS&#xff0c;我们就不…

行转列(大全)

1、统计行数&#xff0c;转成列显示。 CREATE TABLE shop_20231223 (name_ed varchar(255) DEFAULT NULL,time_ed varchar(255) DEFAULT NULL,day_ed int DEFAULT NULL ) select sum(case when day_ed 9 then 1 else 0 end) month_9, sum(case when day_ed 10 then 1 else …

指针的概念

在C语言中&#xff0c;内存单元的地址称为指针&#xff0c;专门用来存放地址的变量&#xff0c;有时对地址&#xff0c;指针和指针变量不区分&#xff0c;统称指针。&#xff08;地址指针&#xff09; 一般情况下&#xff0c;最前面的存储类型通常会省略 指针在说明的同时&…

单调栈分类、封装和总结

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 通过枚举最小&#xff08;最大&#xff09;值不重复、不遗漏枚举所有子数组 C算法&#xff1a;美丽塔O(n)解法单调栈左右寻找第一个小于maxHeight[i]的left,right&#xff0c;[left,right]直接的高度都是maxHeight[i] 可以…

Java项目-瑞吉外卖项目优化Day3

前后端分离开发 Yapi 是一个接口结合了接口测试、接口管理的管理平台&#xff0c;需要配置比较麻烦。看弹幕说用apifox更好用。可以将接口文档导出导入。 Swagger 注意下面的地址前面要有/。 效果&#xff1a; 可以在这里实现接口的测试&#xff0c;也可以导出文档等等。一般…

node.js——如何安装并管理node.js多个版本进行开发,看这一篇文章就够了!!!

安装并管理node多个版本 一、nvm介绍二、安装三、常用操作命令 总结 本文介绍了如何安装并管理node多个版本进行开发。 一、nvm介绍 nvm是Node.js的版本管理器&#xff0c;安装并使用&#xff0c;可以让我们切换不同的Node.js版本进行开发。 二、安装 下载对应系统的nvm安装…

图片转excel:“保留数字格式”在什么场景下该勾

保留数字格式是什么意思呢&#xff1f;顾名思义&#xff0c;就是将转出来的数字保留为数字格式&#xff0c;而不是文本格式。我们知道&#xff0c;OCR程序将图片上的文字识别为电脑可编辑的文字后&#xff0c;如果导入到excel不加处理&#xff0c;则单个数字过长的文字就会被ex…

解锁Word新技能,实现下拉框选择功能

项目实施过程中&#xff0c;涉及到从word导入数据&#xff0c;以前常规的搞法是从excel做导入&#xff0c;下拉框实现也比较简单&#xff0c;用数据有效性设置即可&#xff0c;其实当时也考虑用excel来做&#xff0c;因为业务场景的关系&#xff0c;看起来没有word直观&#xf…

【Zabbix】使用 Grafana 统一监控展示并对接Zabbix v6

Grafana是开源的可视化工具&#xff0c;支持各类数据源的接入MySQL、PostgreSQL、AWS CloudWatch、Microsoft SQL Server (MSSQL)等;支持丰富的插件生态系统 Bar chart、CloudWatch、Geomap、Jaeger等。以下是grafana的官方网站&#xff1a; Grafana Labs grafana服务端支持在…

网络爬虫之多任务数据采集(多线程、多进程、协程)

进程&#xff1a;是操作系统中资源分配的基本单位 线程&#xff1a;使用进程分配的资源处理具体任务 一个进程中可以有多个线程&#xff1a;进程相当于一个公司&#xff0c;线程就是公司里面的员工。 一 多线程 多线程都是关于功能的并发执行。而异步编程是关于函数之间的非…

Pycharm解释器的配置: System Intgerpreter 、Pipenv Environment、Virtualenv Environment

文章目录 前提1. 环境准备2. 了解虚拟环境 一、进入Interpreter设置页二、添加Interpreter1. 方式一2. 方式二 三、 System Interpreter四、 Pipenv Environment前提条件&#xff1a;详细步骤1&#xff09; 选择pipenv2&#xff09; 设置Base Interpreter3&#xff09; 设置Pip…

分布式锁常见问题及其解决方案

一、为什么要使用分布式锁&#xff1f; 因为在集群下&#xff0c;相当于多个JVM&#xff0c;就相当于多个锁&#xff0c;集群之间锁是没有关联的&#xff0c;会照成锁失效从而导致线程安全问题 分布式锁可以分别通过MySQL、Redis、Zookeeper来进行实现 二、redis分布式锁的实…