智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于材料生成算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.材料生成算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用材料生成算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.材料生成算法

材料生成算法原理请参考:https://blog.csdn.net/u011835903/article/details/124221652
材料生成算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

材料生成算法参数如下:

%% 设定材料生成优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明材料生成算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296042.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【内存泄漏】内存泄漏及常见的内存泄漏检测工具介绍

内存泄漏介绍 什么是内存泄漏 内存泄漏是指程序分配了一块内存(通常是动态分配的堆内存),但在不再需要这块内存的情况下未将其释放。内存泄漏会导致程序浪费系统内存资源,持续的内存泄漏还导致系统内存的逐渐耗尽,最…

Kafka日志

位置 server.properties配置文件中通过log.dir指定日志存储目录 log.dir/{topic}-{partition} 核心文件 .log 存储消息的日志文件,固定大小为1G,写满后会新增一个文件,文件名表示当前日志文件记录的第一条消息的偏移量。 .index 以偏移…

【SpringCloud笔记】(8)服务网关之GateWay

GateWay 概述简介 官网地址: 上一代网关Zuul 1.x:https://github.com/Netflix/zuul/wiki(有兴趣可以了解一下) gateway:https://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.2.1.RELEASE/reference/…

讲座思考 | 周志华教授:新型机器学习神经元模型的探索

12月22日,有幸听了南京大学周志华教授题为“新型机器学习神经元模型的探索”的讲座。现场热闹非凡,大家像追星一样拿着“西瓜书”找周教授签名。周教授讲得依旧循循善诱,由浅入深,听得我很入迷,故作此记。 周教授首先就…

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类

目录 前言 1 电能质量数据集制作与加载 1.1 导入数据 1.2 制作数据集 2 CNN-2D分类模型和训练、评估 2.1 定义CNN-2d分类模型 2.2 定义模型参数 2.3 模型结构 2.4 模型训练 2.5 模型评估 3 CNN-1D分类模型和训练、评估 3.1 定义CNN-1d分类模型 3.2 定义模型参数 …

【已解决】Python Bresenham 3D算法

放一段使用Python实现Bresenham 3D 算法的代码,并通过Matplot可视化 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from numba import njitnjit def bresenham_safe(grid, x0, y0, z0, x1, y1, z1, value_to_fill…

锯齿云服务器租赁使用教程

首先登陆锯齿云账号 网盘上传数据集与代码 随后我们需要做的是将所需要的数据集与代码上传到网盘(也可以直接在租用服务器后将数据集与代码传到服务器的硬盘上,但这样做会消耗大量时间,造成资源浪费) 点击工作空间:…

谷粒商城-商品服务-新增商品功能开发(商品图片无法展示问题没有解决)

在网关配置路由 - id: member_routeuri: lb://gulimemberpredicates:- Path/api/gulimember/**filters:- RewritePath/api/(?<segment>.*),/$\{segment}并将所有逆向生成的工程调式出来 获取分类关联的品牌 例如&#xff1a;手机&#xff08;分类&#xff09;-> 品…

力扣经典面试题——搜索二维矩阵(两次二分搜索)

https://leetcode.cn/problems/search-a-2d-matrix/description/?envTypestudy-plan-v2&envIdtop-100-liked 思路&#xff1a;先按行二分&#xff0c;再按列进行二分。即先找到对应的行&#xff0c;再找对应的列。 对于这种判断是否存在某个数&#xff0c;记得while(left…

优化模型:MATLAB整数规划

一、整数规划介绍 1.1 整数规划的定义 若规划模型的所有决策变量只能取整数时&#xff0c;称为整数规划。若在线性规划模型中&#xff0c;变量限制为整数&#xff0c;则称为整数线性规划。 1.2 整数规划的分类 整数规划模型大致可分为两类&#xff1a; &#xff08;1&…

阿贝云云服务器

最近&#xff0c;我有幸获得了阿贝云提供的免费云服务器&#xff0c;阿贝云_免费云服务器、高防服务器、虚拟主机、免费空间、免费vps主机服务商!并在使用过程中有了一些深刻的体验和感受。在这篇博客中&#xff0c;我将分享我对阿贝云免费云服务器的使用感受和评价。 首先&am…

物理层——“计算机网络”

各位CSDN的uu们你们好呀&#xff0c;仍然是计算机网络的一些细小的知识点啦&#xff0c;下面&#xff0c;让我们进入计算机网络物理层的世界吧&#xff01;&#xff01;&#xff01; 数据通信基础知识 编码与调制 传输媒体 信道复用技术 数字传输系统 接入技术 数据通信基…