模式识别与机器学习(十一):Bagging

1.原理

Bagging [Breiman, 1996a] 是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrap sampling)。给定包含m 个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时该样本仍有可能被选中,这样,经过m次随机采样操作,我们得到含m 个样本的采样集,初始训练集中有的样本在采样集里多次出现,有的则从未出现,初始训练集中约有63.2%的样本出现在来样集中。

照这样,我们可采样出T 个含m 个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再将这些基学习器进行结合.这就是Bagging 的基本流程.在对预测输出进行结合时, Bagging 通常对分类任务使用简单投票法,对回归任务使用简单平均法.若分类预测时出现两个类收到同样票数的情形,则最简单的做法是随机选择一个,也可进一步考察学习器投票的置信度来确定最终胜者。其步骤如下:

1.对于给定的训练样本S,每轮从训练样本S中采用有放回抽样(Booststraping)的方式抽取M个训练样本,共进行n轮,得到了n个样本集合,需要注意的是这里的n个训练集之间是相互独立的。

2.在获取了样本集合之后,每次使用一个样本集合得到一个预测模型,对于n个样本集合来说,我们总共可以得到n个预测模型。

3.如果我们需要解决的是分类问题,那么我们可以对前面得到的n个模型采用投票的方式得到分类的结果,对于回归问题来说,我们可以采用计算模型均值的方法来作为最终预测的结果。
在这里插入图片描述

2.代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建决策树分类器
base_estimator = DecisionTreeClassifier()# 创建Bagging分类器
clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=100, random_state=42)# 训练模型
clf.fit(X_train, y_train)# 预测测试集
y_pred = clf.predict(X_test)# 打印预测结果
print(y_pred)

我们使用了鸢尾花数据集,这是一个常用的多类别分类数据集。我们首先加载数据,然后划分为训练集和测试集。然后,我们创建一个决策树分类器作为基学习器,并创建一个Bagging分类器,使用训练集对其进行训练。最后,我们使用训练好的模型对测试集进行预测,并打印出预测结果。

BaggingClassifier的参数base_estimator表示基学习器,n_estimators表示基学习器的数量,这些参数都可以根据需要进行调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296124.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【错误记录/js】保存octet-stream为文件后数据错乱

目录 说在前面场景解决方式其他 说在前面 后端:go、gin浏览器:Microsoft Edge 120.0.2210.77 (正式版本) (64 位) 场景 前端通过点击按钮来下载一些文件,但是文件内容是一些非文件形式存储的二进制数据。 后端代码 r : gin.Default()r.Stat…

CGAL的网格简化

1、介绍 曲面网格简化是减少曲面网格中使用的面数,同时尽可能保持整体形状、体积和边界的过程。它是细分法的反面。 这里提出的算法可以使用称为边折叠的方法简化任何有向2流形曲面,具有任意数量的连接组件,有或没有边界(边界或孔…

HP笔记本电脑进入BIOS的方法主要有两种,它们使用场合不同

BIOS(基本输入输出系统)是一种实用程序,它在你按下电源按钮后启动并加载操作系统。无论是要更新HP笔记本电脑的BIOS系统,还是清除前一个系统中的错误,第一步都是进入BIOS实用程序。 在按键输入BIOS设置并对其进行修改…

解决Unity物体速度过快无法进行碰撞检测(碰撞检测穿透)

解决Unity物体速度过快无法进行碰撞检测(碰撞检测穿透) 一、解决碰撞检测穿透方法一Collision Detection碰撞检测总结: 二、解决碰撞检测穿透方法二 一、解决碰撞检测穿透方法一 首先我们知道只要是跟碰撞相关的基本都是离不开刚体 Rigidbod…

串口通信(7)-C#串口通信通信帮助类实例

本文讲解C#串口通信通信帮助类实例 首先创建winform项目添加界面和控件 UI界面 namespace SerialPortDemo {partial class MainForm{/// <summary>/// 必需的设计器变量。/// </summary>private System.ComponentModel.IContainer components = null;/// <sum…

【iOS】UICollectionView

文章目录 前言一、实现简单九宫格布局二、UICollectionView中的常用方法和属性1.UICollectionViewFlowLayout相关属性2.UICollectionView相关属性 三、协议和代理方法&#xff1a;四、九宫格式的布局进行升级五、实现瀑布流布局实现思路实现原理代码调用顺序实现步骤实现效果 总…

《PySpark大数据分析实战》-18.什么是数据分析

&#x1f4cb; 博主简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是wux_labs。&#x1f61c; 热衷于各种主流技术&#xff0c;热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员&#xff08;PCTA&#xff09;、TiDB数据库专家&#xff08;PCTP…

基于Kubernetes的jenkins上线

1、基于helm 部署jenkins 要求&#xff1a;当前集群配置了storageClass&#xff0c;并已指定默认的storageClass&#xff0c;一般情况下&#xff0c;创建的storageClass即为默认类 指定默认storageClass的方式 # 如果是新创建默认类&#xff1a; apiVersion: storage.k8s.io/v1…

排序算法——桶排序

把数据放进若干个桶&#xff0c;然后在桶里用其他排序&#xff0c;近乎分治思想。从数值的低位到高位依次排序&#xff0c;有几位就排序几次。例如二位数就排两次&#xff0c;三位数就排三次&#xff0c;依次按照个十百...的顺序来排序。 第一次排序&#xff1a;50 12 …

Confluent 与阿里云将携手拓展亚太市场,提供消息流平台服务

10 月 31 日&#xff0c;杭州云栖大会上&#xff0c;阿里云云原生应用平台负责人丁宇宣布&#xff0c;Confluent 成为阿里云技术合作伙伴&#xff0c;合作全新升级&#xff0c;一起拓展和服务亚太市场。 本次合作伙伴签约&#xff0c;阿里云与消息流开创领导者 Confluent 将进一…

爬虫工作量由小到大的思维转变---<第二十二章 Scrapy开始很快,越来越慢(诊断篇)>

前言: 相信很多朋友在scrapy跑起来看到速度200/min开心的不得了;可是,越跑到后面,发现速度变成了10-/min;刚开始以为是ip代理的问题,结果根本不得法门... 新手跑3000 ~ 5000左右数据,我相信大多数人没有问题,也不会发现问题; 可一旦数据量上了10W,你是不是就能明显感觉到速度…

MATLAB - 四元数(quaternion)

系列文章目录 前言 一、简介 四元数是一种四元超复数&#xff0c;用于三维旋转和定向。 四元数的表示形式为 abicjdk&#xff0c;其中 a、b、c 和 d 为实数&#xff0c;i、j 和 k 为基元&#xff0c;满足等式&#xff1a;i2 j2 k2 ijk -1。 四元数集用 H 表示&#xff0c…