智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.跳蛛算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用跳蛛算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.跳蛛算法

跳蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/123832349
跳蛛算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

跳蛛算法参数如下:

%% 设定跳蛛优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明跳蛛算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296222.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oracle即时客户端(Instant Client)安装与配置

之前的文章记录了oracle客户端和服务端的下载与安装,内容参见: 在Windows中安装Oracle_windows安装oracle 如果不想安装oracle客户端(或者是电脑因为某些原因无法安装oracle客户端),还想能够连接oracle远程服务&#…

JavaWeb笔记之WEB项目

一. 版本控制 版本控制是指对软件开发过程中各种程序代码、配置文件及说明文档等文件变更的管理,是软件配置管理的核心思想之一。 版本控制最主要的功能就是追踪文件的变更。它将什么时候、什么人更改了文件的什么内容等信息忠实地了记录下来。每一次文件的改变&a…

LangChain 31 模块复用Prompt templates 提示词模板

LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…

网络安全行业术语

病毒 是在计算机程序中插入的破坏计算机功能或者数据的代码,能影响计算机使用,能自我复制的一组计算机指令或者程序代码。 抓鸡 利用使用大量的程序的漏洞,使用自动化方式获取肉鸡的行为,即设法控制电脑,将其沦为肉…

冒泡排序之C++实现

描述 冒泡排序算法是一种简单的排序算法,它通过将相邻的元素进行比较并交换位置来实现排序。冒泡排序的基本思想是,每一轮将未排序部分的最大元素逐个向右移动到已排序部分的最右边,直到所有元素都按照从小到大的顺序排列。 冒泡排序的算法…

Windows平台开发需要掌握的基础知识

windows本身也是一个软件。在这个软件中进行开发时,我们需要对它有个基础的了解,这样能让我们的开发过程更顺畅一些。 下面我就来说一下我们需要关注的基础知识点。 环境变量 有时候我们的程序执行,需要基于一些基础的库。比如Java运行&am…

展望2023年CSDN博客之星评选

目录 1 前言2 博客的意义3 人工智能对博客的影响4 AI 技术下的成长与分享5 技术的探索6 博客之星评选对于技术人的激励作用7 结语 1 前言 当我们回顾过去,博客不仅仅是一种记录生活、分享经验的方式,更是一个见证自我成长与进步的平台。站在2023年度 CS…

Navicat里MySQL表的创建(详细)

我以Navicat连接MySQL为例,演示表的创建方法。 前提 创建表的语法: create table 表名 ( 字段名1,字段类型, 字段名2,字段类型, ...... 字段名n,字段类型 ); 我计划在test库存放一…

JSP打印直角三角形

代码&#xff1a; <%page language"java" contentType"text/html;charsetutf-8"%> <html> <head><title>expressionDemo</title> </head> <body> <h1>以直角三角形的形式输出数字</h1> <table&…

Jmeter、postman、python 三大主流技术如何操作数据库?

1、前言 只要是做测试工作的&#xff0c;必然会接触到数据库&#xff0c;数据库在工作中的主要应用场景包括但不限于以下&#xff1a; 功能测试中&#xff0c;涉及数据展示功能&#xff0c;需查库校验数据正确及完整性&#xff1b;例如商品搜索功能 自动化测试或性能测试中&a…

ESP32+LVGL笔记(6)-把712k的一二级汉字字库放在SPIRAM

文章目录 1.字库制作2.字库烧录到ESP32-S3的flash2.1 配置好分区文件2.2 汉字库文件烧录到ESP32的flash 3.将字库从 flash 拷贝到 SPIRAM3.1 工程配置中有关 SPIRAM 部分3.2 将汉字库从flash拷贝到SPIRAM的代码3.3 在进入lvgl之前调用函数 copyHZK_from_flash_to_SPIRAM 在前面…

Apache Spark简介与历史发展

在当今信息爆炸的时代&#xff0c;大数据处理已成为了现实。企业和组织需要处理海量数据来获得有用的信息和见解。Apache Spark作为一个开源的大数据处理框架&#xff0c;已经在大数据领域占据了重要地位。 Apache Spark简介 Apache Spark是一个用于大规模数据处理的快速、通…