Hadoop入门学习笔记——四、MapReduce的框架配置和YARN的部署

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7
课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd=5ay8

Hadoop入门学习笔记(汇总)

目录

  • 四、MapReduce的框架配置和YARN的部署
    • 4.1. 配置MapReduce和YARN
    • 4.2. YARN集群启停脚本
      • 4.2.1. 一键启停脚本
      • 4.2.2. 单独进程启停
    • 4.3. 提交MapReduce示例程序到YARN运行
      • 4.3.1. 提交wordcount(单词统计)示例程序
      • 4.3.2. 提交根据Monte Carlo蒙特卡罗算法求圆周率的示例程序

四、MapReduce的框架配置和YARN的部署

本次YARN的部署结构如下图所示:
在这里插入图片描述
当前,共有三台服务器(虚拟机)构成集群,集群规划如下所示:

主机部署的服务
node1ResourceManager、NodeManager、ProxyServer、JobHistoryServer
node2NodeManager
node3NodeManager

MapReduce是运行在YARN上的,所以MapReduce只需要配置,YARN需要部署并启动。

4.1. 配置MapReduce和YARN

1、在node1节点,修改mapred-env.sh文件:

# 进入hadoop配置文件目录
cd /export/server/hadoop-3.3.4/etc/hadoop/
# 打开mapred-env.sh文件
vim mapred-env.sh

打开后,在文件中加入以下内容:

# 设置JDK路径
export JAVA_HOME=/export/server/jdk
# 设置JobHistoryServer进程的内存为1G
export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000
# 设置日志级别为INFO
export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA

2、再修改同目录下的mapred-site.xml配置文件,在其configuration标签内增加以下内容:

  <property><name>mapreduce.framework.name</name><value>yarn</value><description></description></property><property><name>mapreduce.jobhistory.address</name><value>node1:10020</value><description></description></property><property><name>mapreduce.jobhistory.webapp.address</name><value>node1:19888</value><description></description></property><property><name>mapreduce.jobhistory.intermediate-done-dir</name><value>/data/mr-history/tmp</value><description></description></property><property><name>mapreduce.jobhistory.done-dir</name><value>/data/mr-history/done</value><description></description></property><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value></property>

其中,
mapreduce.framework.name 表示MapReduce的运行框架,这里设置为Yarn;
mapreduce.jobhistory.address 表示历史服务器通讯地址和端口号,这里为node1:10020;
mapreduce.jobhistory.webapp.address 表示历史服务器Web端地址和端口号,这里为node1:19888;
mapreduce.jobhistory.intermediate-done-dir 表示历史信息在HDFS的记录临时路径,这里是/data/mr-history/tmp;
mapreduce.jobhistory.done-dir 表示历史信息在HDFS的记录路径,这里是/data/mr-history/done;
yarn.app.mapreduce.am.env 表示MapReduce HOME的路径,这里设置为HADOOP_HOME相同路径;
mapreduce.map.env 表示Map HOME的路径,这里设置为HADOOP_HOME相同路径;
mapreduce.reduce.env 表示Reduce HOME的路径,这里设置为HADOOP_HOME相同路径;

至此,MapReduce的配置完成。

3、接下来,配置YARN。在node1节点,修改yarn-env.sh文件:

# 进入hadoop配置文件目录
cd /export/server/hadoop-3.3.4/etc/hadoop/
# 打开yarn-env.sh文件
vim yarn-env.sh

在文件中添加以下内容:

# 设置JDK路径的环境变量
export JAVA_HOME=/export/server/jdk
# 设置HADOOP_HOME的环境变量
export HADOOP_HOME=/export/server/hadoop
# 设置配置文件路径的环境变量
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
# 设置日志文件路径的环境变量
export HADOOP_LOG_DIR=$HADOOP_HOME/logs

4、修改同目录下的yarn-site.xml配置文件,在其configuration节点中添加以下内容:

  <!-- Site specific YARN configuration properties --><property><name>yarn.log.server.url</name><value>http://node1:19888/jobhistory/logs</value><description></description></property><property><name>yarn.web-proxy.address</name><value>node1:8089</value><description>proxy server hostname and port</description></property><property><name>yarn.log-aggregation-enable</name><value>true</value><description>Configuration to enable or disable log aggregation</description></property><property><name>yarn.nodemanager.remote-app-log-dir</name><value>/tmp/logs</value><description>Configuration to enable or disable log aggregation</description></property><!-- Site specific YARN configuration properties --><property><name>yarn.resourcemanager.hostname</name><value>node1</value><description></description></property><property><name>yarn.resourcemanager.scheduler.class</name><value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value><description></description></property><property><name>yarn.nodemanager.local-dirs</name><value>/data/nm-local</value><description>Comma-separated list of paths on the local filesystem where intermediate data is written.</description></property><property><name>yarn.nodemanager.log-dirs</name><value>/data/nm-log</value><description>Comma-separated list of paths on the local filesystem where logs are written.</description></property><property><name>yarn.nodemanager.log.retain-seconds</name><value>10800</value><description>Default time (in seconds) to retain log files on the NodeManager Only applicable if log-aggregation is disabled.</description></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value><description>Shuffle service that needs to be set for Map Reduce applications.</description></property>

其中,核心配置如下:
yarn.resourcemanager.hostname 表示ResourceManager设置在哪个节点,这里是node1节点;
yarn.nodemanager.local-dirs 表示NodeManager中间数据Linux系统本地存储的路径;
yarn.nodemanager.log-dirs 表示NodeManager数据Linux系统日志本地存储的路径;
yarn.nodemanager.aux-services 表示为MapReduce程序开启Shuffle服务;
额外配置如下:
yarn.log.server.url 表示历史服务器的URL;
yarn.web-proxy.address 表示代理服务器的主机和端口号;
yarn.log-aggregation-enable 表示是否开启日志聚合;
yarn.nodemanager.remote-app-log-dir 表示程序日志在HDFS中的存放路径;
yarn.resourcemanager.scheduler.class 表示选择Yarn使用的调度器,这里选的是公平调度器;

5、完成上述配置后,需要将MapReduce和YARN的配置文件分发到node2和node3服务器相同位置中,使用hadoop用户身份执行以下命令

# 将mapred-env.sh、mapred-site.xml、yarn-env.sh、yarn-site.xml四个配置文件,复制到node2的相同路径下
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml node2:`pwd`/
# 将mapred-env.sh、mapred-site.xml、yarn-env.sh、yarn-site.xml四个配置文件,复制到node3的相同路径下
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml node2:`pwd`/

4.2. YARN集群启停脚本

在启动YARN集群前,需要确保HDFS集群已经启动。同样,启停YARN集群也必须使用hadoop用户身份。

4.2.1. 一键启停脚本

  1. $HADOOP_HOME/sbin/start-yarn.shstart-yarn.sh 一键启动YARN集群
  • 会基于yarn-site.xml中配置的yarn.resourcemanager.hostname来决定在哪台机器上启动resourcemanager;
  • 会基于workers文件配置的主机启动NodeManager;
  • 在当前机器启动ProxyServer(代理服务器)。
    命令执行效果如下图所示:
    在这里插入图片描述
    此时通过jps命令查看进程,可以看到如下效果:
    在这里插入图片描述
    此时,可以看到ResourceManager、NodeManager和WebAppProxyServer都已经启动,还需要启动HistoryServer,可以通过后续章节介绍的mapred --daemon start historyserver命令启动。
    至此,整个YARN集群启动完成。
    此时,可以通过访问http://node1:8088/ 即可看到YARN集群的监控页面(即ResourceManager的WebUI)
    在这里插入图片描述
  1. $HADOOP_HOME/sbin/stop-yarn.shstop-yarn.sh 一键关闭YARN集群。
  2. 配置部署好YARN集群后,可以关闭YARN集群、关闭JobHistoryServer、关闭HDFS集群、关闭虚拟机之后,对虚拟机创建快照,保存好当前环境。

4.2.2. 单独进程启停

  1. 在每一台机器,单独启动或停止进程,可以通过如下命令执行:
$HADOOP_HOME/bin/yarn --daemon start|stop resourcemanager|nodemanager|proxyserver

start和stop决定启动和停止;
可控制resourcemanager、nodemanager、webappproxyserver三种进程。
例如:

# 在node1启动ResourceManager
yarn --daemon start resourcemanager
# 在node1、node2、node3分别启动NodeManager
yarn --daemon start nodemanager
# 在node1启动WebProxyServer
yarn --daemon start proxyserver
  1. 历史服务器(JobHistoryServer)的启动和停止
$HADOOP_HOME/bin/mapred --daemon start|stop historyserver

用法:

# 启动JobHistoryServer
mapred --daemon start historyserver
# 停止JobHistoryServer
mapred --daemon stop historyserver

4.3. 提交MapReduce示例程序到YARN运行

YARN作为资源调度管控框架,其本身提供资供许多程序运行,常见的有:

  • MapReduce程序
  • Spark程序
  • Flink程序

Hadoop官方提供了一些预置的MapReduce程序代码,存放于$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.1.jar文件内。
上述程序可使用hadoop har命令提交至YARN运行,其命令语法为:

hadoop jar 程序文件 java类名 [程序参数] ... [程序参数]

4.3.1. 提交wordcount(单词统计)示例程序

1、程序内容

  • 给定数据输入的路径(HDFS)、给定结果输出的路径(HDFS)
  • 将输入路径内的数据中的单词进行计数,将结果写到输出路径

2、准备一份待统计的数据文件并上传至HDFS中
使用vim words.txt命令,在Linux本地创建words.txt文件,其内容如下:

itheima itcast itheima itcast
hadoop hdfs hadoop hdfs
hadoop mapreduce hadoop yarn
itheima hadoop itcast hadoop
itheima itcast hadoop yarn mapreduce

使用命令hdfs dfs -mkdir -p /input在HDFS根目录创建input文件夹(用于存储待统计的文件),使用hdfs dfs -mkdir -p /output命令在HDFS根目录创建output文件夹(用于存储统计结果),使用hdfs dfs -put words.txt /input命令将本地的words.txt文件上传至HDFS系统中。

3、提交MapReduce程序
使用如下命令:

hadoop jar /export/server/hadoop-3.3.4/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar wordcount hdfs://node1:8020/input/ hdfs://8020/output/wc

其中,
hadoop jar 表示向YARN提交一个Java程序;
/export/server/hadoop-3.3.4/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar 表示所要提交的程序路径;
wordcount 表示要运行的java类名;
hdfs://node1:8020/input/ 表示参数1,在本程序中是待统计的文件夹,这里写了hdfs协议头,指明了是HDFS文件系统的路径(经测试,不写也可以,默认读取HDFS文件系统路径);
hdfs://8020/output/wc 表示参数2,在本程序中是统计结果输出的文件夹,这里写明了hdfs协议头,指明了是HDFS文件系统的路径(经测试,不写也可以,默认读取HDFS文件系统路径),这里需要确保该文件夹不存在,否则会报错
运行日志如下所示:

[hadoop@node1 ~]$ hadoop jar /export/server/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar wordcount hdfs://node1:8020/input hdfs://node1:8020/output/wc
2023-12-14 15:31:53,988 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at node1/192.168.88.101:8032
2023-12-14 15:31:55,818 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/hadoop/.staging/job_1702538855741_0001
2023-12-14 15:31:56,752 INFO input.FileInputFormat: Total input files to process : 1
2023-12-14 15:31:57,040 INFO mapreduce.JobSubmitter: number of splits:1
2023-12-14 15:31:57,607 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1702538855741_0001
2023-12-14 15:31:57,607 INFO mapreduce.JobSubmitter: Executing with tokens: []
2023-12-14 15:31:58,167 INFO conf.Configuration: resource-types.xml not found
2023-12-14 15:31:58,170 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2023-12-14 15:31:59,119 INFO impl.YarnClientImpl: Submitted application application_1702538855741_0001
2023-12-14 15:31:59,406 INFO mapreduce.Job: The url to track the job: http://node1:8089/proxy/application_1702538855741_0001/
2023-12-14 15:31:59,407 INFO mapreduce.Job: Running job: job_1702538855741_0001
2023-12-14 15:32:23,043 INFO mapreduce.Job: Job job_1702538855741_0001 running in uber mode : false
2023-12-14 15:32:23,045 INFO mapreduce.Job:  map 0% reduce 0%
2023-12-14 15:32:37,767 INFO mapreduce.Job:  map 100% reduce 0%
2023-12-14 15:32:50,191 INFO mapreduce.Job:  map 100% reduce 100%
2023-12-14 15:32:51,220 INFO mapreduce.Job: Job job_1702538855741_0001 completed successfully
2023-12-14 15:32:51,431 INFO mapreduce.Job: Counters: 54File System CountersFILE: Number of bytes read=84FILE: Number of bytes written=553527FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=248HDFS: Number of bytes written=54HDFS: Number of read operations=8HDFS: Number of large read operations=0HDFS: Number of write operations=2HDFS: Number of bytes read erasure-coded=0Job CountersLaunched map tasks=1Launched reduce tasks=1Data-local map tasks=1Total time spent by all maps in occupied slots (ms)=11593Total time spent by all reduces in occupied slots (ms)=9650Total time spent by all map tasks (ms)=11593Total time spent by all reduce tasks (ms)=9650Total vcore-milliseconds taken by all map tasks=11593Total vcore-milliseconds taken by all reduce tasks=9650Total megabyte-milliseconds taken by all map tasks=11871232Total megabyte-milliseconds taken by all reduce tasks=9881600Map-Reduce FrameworkMap input records=6Map output records=21Map output bytes=233Map output materialized bytes=84Input split bytes=98Combine input records=21Combine output records=6Reduce input groups=6Reduce shuffle bytes=84Reduce input records=6Reduce output records=6Spilled Records=12Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=300CPU time spent (ms)=2910Physical memory (bytes) snapshot=353423360Virtual memory (bytes) snapshot=5477199872Total committed heap usage (bytes)=196218880Peak Map Physical memory (bytes)=228843520Peak Map Virtual memory (bytes)=2734153728Peak Reduce Physical memory (bytes)=124579840Peak Reduce Virtual memory (bytes)=2743046144Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format CountersBytes Read=150File Output Format CountersBytes Written=54

4、查看运行结果

运行完毕后,使用hadoop fs -ls /output/wc可以看到运行结果输出的文件
在这里插入图片描述
使用hadoop fs -cat /output/wc/part-r-00000命令,可以看到程序运行的结果
在这里插入图片描述

除此之外,在YARN集群的监控页面http://node1:8088/ 点击左侧的Applications菜单,可以看到刚才运行过的任务
在这里插入图片描述
再点击任务的ID,可以进入任务详情页面
在这里插入图片描述
再点击某一个阶段的Logs链接,可以看到对应阶段的运行的客户端日志(在配置yarn-site.xml文件时,配置了开启日志聚合),这个页面本质上是JobHistoryServer提供的页面(19888端口)
在这里插入图片描述
在任务详情页面点击History链接,可以看到任务的历史运行状态,在其中可以看到其Map任务和Reduce任务,也可以继续点进Map和Reduce任务查看相关的日志等信息,对于程序出错时的排查很有帮助。
在这里插入图片描述

4.3.2. 提交根据Monte Carlo蒙特卡罗算法求圆周率的示例程序

1、提交程序

hadoop jar /export/server/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar pi 3 1000

hadoop jar 表示向YARN提交一个Java程序;
/export/server/hadoop-3.3.4/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar 表示所要提交的程序路径;
pi 表示运行的Java类名;
3 表示使用3个Map任务;
1000 表示样本数为1000,样本数越多,求得的圆周率越准确,但是程序运行时长越长。
运行日志如下所示:

[hadoop@node1 ~]$ hadoop jar /export/server/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar pi 3 1000
Number of Maps  = 3
Samples per Map = 1000
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Starting Job
2023-12-14 16:06:12,042 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at node1/192.168.88.101:8032
2023-12-14 16:06:13,550 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/hadoop/.staging/job_1702538855741_0002
2023-12-14 16:06:13,888 INFO input.FileInputFormat: Total input files to process : 3
2023-12-14 16:06:14,149 INFO mapreduce.JobSubmitter: number of splits:3
2023-12-14 16:06:14,658 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1702538855741_0002
2023-12-14 16:06:14,659 INFO mapreduce.JobSubmitter: Executing with tokens: []
2023-12-14 16:06:15,065 INFO conf.Configuration: resource-types.xml not found
2023-12-14 16:06:15,065 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2023-12-14 16:06:15,256 INFO impl.YarnClientImpl: Submitted application application_1702538855741_0002
2023-12-14 16:06:15,403 INFO mapreduce.Job: The url to track the job: http://node1:8089/proxy/application_1702538855741_0002/
2023-12-14 16:06:15,404 INFO mapreduce.Job: Running job: job_1702538855741_0002
2023-12-14 16:06:32,155 INFO mapreduce.Job: Job job_1702538855741_0002 running in uber mode : false
2023-12-14 16:06:32,156 INFO mapreduce.Job:  map 0% reduce 0%
2023-12-14 16:06:47,156 INFO mapreduce.Job:  map 67% reduce 0%
2023-12-14 16:06:50,188 INFO mapreduce.Job:  map 100% reduce 0%
2023-12-14 16:06:57,275 INFO mapreduce.Job:  map 100% reduce 100%
2023-12-14 16:06:58,328 INFO mapreduce.Job: Job job_1702538855741_0002 completed successfully
2023-12-14 16:06:58,589 INFO mapreduce.Job: Counters: 54File System CountersFILE: Number of bytes read=72FILE: Number of bytes written=1108329FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=786HDFS: Number of bytes written=215HDFS: Number of read operations=17HDFS: Number of large read operations=0HDFS: Number of write operations=3HDFS: Number of bytes read erasure-coded=0Job CountersLaunched map tasks=3Launched reduce tasks=1Data-local map tasks=3Total time spent by all maps in occupied slots (ms)=39354Total time spent by all reduces in occupied slots (ms)=7761Total time spent by all map tasks (ms)=39354Total time spent by all reduce tasks (ms)=7761Total vcore-milliseconds taken by all map tasks=39354Total vcore-milliseconds taken by all reduce tasks=7761Total megabyte-milliseconds taken by all map tasks=40298496Total megabyte-milliseconds taken by all reduce tasks=7947264Map-Reduce FrameworkMap input records=3Map output records=6Map output bytes=54Map output materialized bytes=84Input split bytes=432Combine input records=0Combine output records=0Reduce input groups=2Reduce shuffle bytes=84Reduce input records=6Reduce output records=0Spilled Records=12Shuffled Maps =3Failed Shuffles=0Merged Map outputs=3GC time elapsed (ms)=699CPU time spent (ms)=11980Physical memory (bytes) snapshot=775233536Virtual memory (bytes) snapshot=10945183744Total committed heap usage (bytes)=466890752Peak Map Physical memory (bytes)=227717120Peak Map Virtual memory (bytes)=2734153728Peak Reduce Physical memory (bytes)=113000448Peak Reduce Virtual memory (bytes)=2742722560Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format CountersBytes Read=354File Output Format CountersBytes Written=97
Job Finished in 46.895 seconds
Estimated value of Pi is 3.14133333333333333333

2、查看运行情况
在在YARN集群的监控页面,可以查看对应任务的History信息,可以看到当前任务使用了3个Map任务和1个Reduce任务,同时,也可以查看相应的运行日志信息。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/296345.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 Git 分支管理:提升团队协作与开发效率

目录 前言1 什么是分支2 分支的好处2.1 并行开发的支持2.2 独立性与隔离性2.3 灵活的版本控制2.4 提高安全性和代码质量2.5 项目历史的清晰记录 3 Git 分支操作命令3.1 git branch -v3.2 git branch 分支名称3.3 git checkout 分支名称3.4 git merge 分支名称3.5 git rebase 分…

ABC334 A-F

打的很懒的一场B卡了D看不懂题卡了F没看完题目理解错题意了&#xff0c;状态好差XD UNIQUE VISION Programming Contest 2023 Christmas (AtCoder Beginner Contest 334) - AtCoder A - Christmas Present 题意&#xff1a; 给出两个数B, G问哪个大 题解&#xff1a; 凑数…

PHP函数定义和分类

函数的含义和定义格式 在PHP中&#xff0c;允许程序员将常用的流程或者变量等组件组织成一个固定的格式实现特定功能&#xff0c;也就是说函数是具有特定功能特定格式的代码段。 函数的定义格式如下&#xff1a; function 函数名(参数1&#xff0c;参数2&#xff0c;参数n) {…

Could not resolve com.github.CymChad:BaseRecyclerViewAdapterHelper:2.9.28.

1、首先进入阿里云maven仓库&#xff0c;在搜索栏输入无法下载的依赖名称&#xff0c;查询现有版本号&#xff0c;可以看到这里有2.9.34。 2、在build.gradle(Project)的buildscript闭包下替换为阿里云maven仓库&#xff1a; maven { url https://www.jitpack.io } maven { u…

酒店网站搭建的作用是什么

线上已经成为各行业商家增长破局的必要手段&#xff0c;传统酒店行业因信息扩展度不够&#xff0c;导致品牌难以传播、无法实现用户对酒店所有信息全面知悉&#xff0c;也无法实现在线预约及其它赋能用户消费的路径。 面对获客转化难题&#xff0c;很多酒店商家通过建立自营商…

Maven私服

1 Maven私服简介 Maven 私服是一种特殊的Maven远程仓库&#xff0c;它是架设在局域网内的仓库服务&#xff0c;用来代理位于外部的远程仓库&#xff08;中央仓库、其他远程公共仓库&#xff09;。 1.1 下载构件顺序 建立私服后&#xff0c;当局域网内的用户需要某个构件时&a…

〔002〕虚幻 UE5 发送 get、post 请求、读取 json 文件

✨ 目录 ▷ 安装 varest 扩展▷ 开启 varest 扩展▷ 发送 get 请求▷ 发送 post 请求▷ 读取 json 文件 ▷ 安装 varest 扩展 打开 虚幻商城&#xff0c;搜索 varest 关键字进行检索&#xff0c; varest 是一个 api 调用插件&#xff0c;支持 http/https 请求&#xff0c;也支…

力扣(leetcode)1148和1179题(MySQL)

1148.文章浏览I 题目链接&#xff1a;1148.文章浏览I 解答 # Write your MySQL query statement below select distinct author_id as id from Views where author_idviewer_id order by id;1179.重新格式化部门表 题目链接&#xff1a;1179.重新格式化部门表 解答 …

【小白攻略】php 小数转为百分比,保留两位小数的函数

php 小数转为百分比 首先&#xff0c;最简单直观的方法是利用PHP内置的number_format函数。该函数可以对一个数字进行格式化&#xff0c;并可以设置小数点后的精度。通过将小数乘以100&#xff0c;再用number_format函数将结果格式化为百分比形式&#xff0c;即可达到将小数转为…

网络监测之如何保障企业业务系统安全?

网络信息安全在网络时代的重要性不言而喻。随着互联网的普及和数字化进程的加速&#xff0c;网络已经成为人们生活、工作和学习的重要平台。在这个平台上&#xff0c;信息交流、数据存储、在线支付等都需要依赖于网络信息安全。其中企事业单位业务系统安全值得关注。 企事业单…

集合

1.Collection集合 1.1数组和集合的区别【理解】 相同点 都是容器,可以存储多个数据 不同点 数组的长度是不可变的,集合的长度是可变的 数组可以存基本数据类型和引用数据类型 集合只能存引用数据类型,如果要存基本数据类型,需要存对应的包装类 1.2集合类体系结构【理解】…

深度学习中的池化

1 深度学习池化概述 1.1 什么是池化 池化层是卷积神经网络中常用的一个组件&#xff0c;池化层经常用在卷积层后边&#xff0c;通过池化来降低卷积层输出的特征向量&#xff0c;避免出现过拟合的情况。池化的基本思想就是对不同位置的特征进行聚合统计。池化层主要是模仿人的…