星火认知大模型,让我感受到了国产AI的崛起

文章目录

    • 一、申请和测试代码
    • 二、实测GPT4.0和星火认知大模型的对比
      • 2.1 测试网站
      • 2.2 经典问题提问对比
      • 2.3 代码问题提问对比
      • 2.4 论文问题对比
      • 2.5 评价

一、申请和测试代码

在我之前的一篇文章中,我分享了如何申请星火认知大模型的内测,并提供了一份可以使用的python代码,具体见地址:

https://blog.csdn.net/weixin_46211269/article/details/131720896

二、实测GPT4.0和星火认知大模型的对比

2.1 测试网站

在我的镜像,接入了GPT4.0和星火认知大模型,因此我以它来做对比。地址:

https://ai.zcai.cloud
https://chat.zcai.cloud/

2.2 经典问题提问对比

  1. 鲁迅和周树人是同一个人吗?

GPT4.0回答:
在这里插入图片描述
星火认知大模型回答:
在这里插入图片描述

  1. 树上有十只鸟,猎人用枪打死一只,树上还有几只鸟?

GPT4.0回答:在这里插入图片描述

星火认知大模型回答:
在这里插入图片描述

2.3 代码问题提问对比

问题:请帮我完成一个完整的随机森林代码,包括加载数据、数据处理、模型训练、加载、可视化分析等。
GPT4.0回答:

# 导入所库
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 数据处理
X_train, X_test, y_train, y_test = train_test(X y, test_size=0.3, random_state=1)# 模型训练
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y)# 模型评估
y_pred = clf.predict(X_test)
print('Accuracy: ', accuracy_score(y_test, y_pred))# 特征重要性可视化
feature_imp = pd.Series(clf.feature_importances_,index=iris.feature_names).sort_values(ascending=False)
sns.barplot(x=feature_imp, y=feature_imp.index)
plt.xlabel('Feature Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.show()

星火认知大模型回答:

# 导入所需库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report# 加载数据
data = pd.read_csv('data.csv')
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values# 数据处理(这里假设数据已经处理好,不需要额外处理)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建随机森林模型
rf = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
rf.fit(X_train, y_train)# 预测
y_pred = rf.predict(X_test)# 评估模型
print("准确率:", accuracy_score(y_test, y_pred))
print("混淆矩阵:", confusion_matrix(y_test, y_pred))
print("分类报告:", classification_report(y_test, y_pred))# 可视化分析(这里假设数据已经可视化,不需要额外可视化)

2.4 论文问题对比

问题:我需要完成一篇论文,题目为:基于机器学习的欺诈分析检测,请你帮我生成一份合理的论文大纲,尽量细化到三级标题

GPT4.0回答:

一、引言1.1 研究背景
1.2 研究目的
1.3 研究意义
.4 论文结
二、机器学习概述
2.1 器学习定义## 2.2 机器学习类型
2.2.1 监督学习
2.2.2 无监督学习
2.2.3 半监督学习
2.2.4 强化学习
2.3 机器学习应用领域
三、欺诈分析检测的必要性和挑战
3.1 欺诈行为的严重性
3.2 欺诈检测的挑战
3.2.1 数据问题
3.2.2 特征选择问题
3.2.3 类别不平衡问题
3.3 机器学习在欺诈检测中的作
四、基机器学习的欺诈分析检测方法
4.1 数据预处理
4.1.1 数据清洗
4.1.2 数据转换
4.1.3 特征选择
4.2 机器学习模型构建
4.2.1 选择模型
4.2.2 训练模型
4.2.3 模型评估
4.3 案例分析
五、未来展望和研究方向
5.1 引入新的机器学习技术
5.2 欺诈分析检测模型的改进
5.3 欺诈行为预防
六、结论
6.1 研究成果
6.2 局限性
6.3 对后续研究的建议

星火认知大模型回答:

I. 引言
A. 研究背景和意义
B. 国内外研究现状
C. 研究内容和方法II. 机器学习基础
A. 机器学习概述
B. 支持向量机算法原理及应用
C. 决策树算法原理及应用III. 欺诈行为分析与预测模型的建立
A. 欺诈行为的概念和类型分析
B. 建立欺诈检测预测模型的方法和流程
1. 数据收集和预处理
2. 特征提取和选择
3. 建立分类器模型
4. 对模型进行评估和优化IV. 实验设计与结果分析
A. 实验设计
1. 数据集介绍
2. 评价指标的选择
3. 实验环境配置
B. 结果分析与讨论
1. 对不同算法的性能比较
2. 对不同特征的选取效果分析
3. 对模型优化的效果分析V. 结论与展望
A. 主要研究成果总结
B.存在的问题及展望
C.后续工作的建议和展望VI.参考文献

2.5 评价

经过三个方向的测试,在经典的问题上我们可以看出两者几乎没有区别;在代码问题上,几乎也没有差距,其中GPT4.0主要在解释上稍微多一点,实际回答的代码基本差不多;在论文方面,似乎也差不多,当然需要更多的测试。

虽然我只做了一些测试,并没有大面积的测试,从星火认知大模型的表现上来看,我已经感受到了国产AI的崛起。据小道消息,星火认知大模型下个月还会再次迭代,也许即将达到4.0的效果。当然,我们从这些基本的测试可以看出,星火认知大模型已经超过GPT3.5了,我的评价是它基于GPT3.5和GPT4.0之间,即将达到GPT4.0水平。

我很高兴地看到国产AI地崛起,希望将来会越做越好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/29642.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在分区工具上,格式化分区和删除分区. 两者有什么不一样吗?

1.格式化分区:就是重建文件系统,等于把目标分区的数据全部清掉。 删除分区:你删除后可以再重新分区,可以分区多个分区,前提是“删除分区”的大小足够大。分了区,还必须格式化,才能用。 只有分了…

Lottie源代码解析

Lottie-iOS Lottie动画的原理: 一个完整动画View,是由很多个子Layer 组成,而每个子Layer主要通过shapes(形状),masks(蒙版),transform三大部分进行动画。Lottie框架通过…

Spring Data JPA使用规则和审计的学习

一、引入依赖 完整的pom文件如下所示: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http…

rabbitmq部署(docker方式)

前言&#xff1a;rabbitmq一旦有漏洞&#xff0c;版本升级麻烦&#xff0c;于是改为docker部署 环境&#xff1a;centos7 #停掉之前的服务 systemctl stop rabbitmq-server systemctl disable rabbitmq-server 查了官网&#xff0c;当前3.11.x 最高版本是3.11.19, 虽然3.12…

什么是从人类反馈中强化学习(RLHF)?

目录 一、什么是RLHF? 二、语言作为强化学习问题 三、用于语言模型的RLHF 四、ChatGPT如何使用RLHF 五、RLHF对语言模型的限制 自从OpenAI公司发布ChatGPT以来&#xff0c;人们对大型语言模型(LLM)的这一重大进步感到兴奋。虽然ChatGPT与其他最先进的大型语言模型大小相同…

华为ospf路由协议在局域网中的高级应用案例

关键配置&#xff1a; 1、出口为ospf区域0&#xff0c;下联汇聚依次区域1、2…&#xff0c;非骨干全部为完全nssa区域 2、核心&#xff08;abr&#xff09;上对非骨干区域进行路由汇总&#xff0c;用于解决出口两台路由的条目数量 3、ospf静默接口配置在汇聚下联接接入交换机的…

回归预测 | MATLAB实现基于KELM-Adaboost核极限学习机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于KELM-Adaboost核极限学习机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于KELM-Adaboost核极限学习机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于KELM-Adaboo…

【Mac使用笔记】之 Homebrew

Homebrew更新&#xff1a; brew update && brew upgrade 当出现错误&#xff1a; fatal: couldnt find remote ref refs/heads/master 执行&#xff1a; brew tap --repair Ruby安装&#xff1a; 1、查看当前Homebrew版本&#xff1a; brew --version2、查看当前…

漫谈大数据时代的个人信息安全(三)——“点赞之交”

大数据时代的个人信息安全系列三&#xff1a;“点赞之交” 1. 点赞之交2. 点赞诈骗3. 个人信息保护小贴士 互联网就像公路&#xff0c;用户使用它&#xff0c;就会留下脚印。 每个人都在无时不刻的产生数据&#xff0c;在消费数据的同时&#xff0c;也在被数据消费。 近日&am…

Flutter 小技巧之滑动控件即将“抛弃” shrinkWrap 属性

相信对于 Flutter 开发的大家来说&#xff0c; ListView 的 shrinkWrap 配置都不会陌生&#xff0c;如下图所示&#xff0c;每当遇到类似的 unbounded error 的时候&#xff0c;总会有第一反应就是给 ListView 加上 shrinkWrap: true 就可以解决问题&#xff0c;那为什么现在会…

Spring Boot进阶(55):SpringBoot之集成MongoDB及实战使用 | 超级详细,建议收藏

1. 前言&#x1f525; 前几期我们有介绍Mysql、Redis等数据库介绍及实战演示&#xff0c;对基本的数据存放有很好的共性&#xff0c;但是如果说遇到大面积的xml、Json、bson等格式文档数据存放&#xff0c;以上数据库并非是最优选择&#xff0c;最优选择是Mongodb数据库。 那么…

AI时代图像安全“黑科技”如何助力人工智能与科技发展?

〇、前言 7月7日下午&#xff0c;2023世界人工智能大会&#xff08;WAIC&#xff09;“聚焦大模型时代AIGC新浪潮—可信AI”论坛在上海世博中心红厅举行。人工智能等技术前沿领域的著名专家与学者、投资人和领军创业者汇聚一堂&#xff0c;共同探索中国科技创新的驱动力量。 在…