指标体系构建-03-交易型的数据指标体系

参考:

本文参考

1.接地气的陈老师的数据指标系列
2.科普 | 零售行业的数据指标体系及其含义、应用阶段
3.”人货场”模型搞懂没?数据分析大部分场景都能用!
4.一分钟读懂广告投放各计费CPM、CPC等(公式推导干货)
5.AARRR百度百科

人货场分析维度:

货物属性。货物属性会直接影响到消费者购买行为:

购买频率:新鲜蔬菜水果购买频率高,米面油购买频率低
上市季节:新鲜蔬菜水果有当季产品,反季节的卖得贵也不好吃,米面油没啥季节性
产品价格:单品价格贵的就卖得少,趁便宜买,零散买,便宜的就批量买
购买渠道:如果有物流配送,大件硬通货(米面油)在线上买更省事,散件的就线下买,最好能现场试吃几个避免踩雷

卖场属性,包含:

便利性:距离越近、越方便的菜场肯定越吸引人
整洁程度:越干净的菜场肯定更吸引人
产品丰富程度:菜品越丰富的菜场越吸引人
产品新鲜度:菜品越新鲜水灵的越吸引人
产品价格:因为铺租、人工不同,有的卖场就是死贵死贵的

用户属性分析

注意,传统行业讲人货场,人指的是售货员,不是消费者。所谓人效指的是业务员平均产生的经济效益。但是互联网应用是APP对用户,没有销售概念,因此才把售货员改成用户,所谓人的分析,变成用户属性分析。
一提用户属性,很多同学条件反射的都是:性别、年龄、地域。问题是你的公司真的能采集到这么多真实的用户信息?而且这些字段不见得能看出啥,最典型的就是性别,男女比例差异常常只有几个点,能说明个屁问题。
基于互动、消费行为标签会更好用,比如生鲜电商的领域,有多少客户是注册送20元米面油券,首单免配送费,进口车厘子25元4斤这种活动搞进来的。这叫促销敏感型用户。类似的,还可以打:刚性购买用户、异常天气购买用户、疫区用户等等标签,这些可能区分度更高
在这里插入图片描述

人货场模型搭建
有了三个维度的基础理解,就能用来综合解释问题。回到开头的“生鲜电商复购率低”的问题。可以先从人货场角度建立分析假设:

人角度:
地推质量太差,用户本身没有需求
用户有需求,但是薅羊毛型太多,刚需性少
刚需用户有一定量,但产品不符合用户需求

货角度:
商品本身品类太少
品类不少,但没有强势引流款
有引流款,但价格没优势

场角度:
用户习惯未建立,二次登陆都很少
二次登陆有,但没有进到购买页
进到购买页,但未下单

各自建立假设后,有两种方法建立整体思路:

第一, 从数据出发,哪个问题严重就从哪里下手
第二, 从业务出发,最近发生哪些大事,从哪里下手
在这里插入图片描述

零售

在这里插入图片描述

为什么要从零售讲起

1.零售的模式最简单:进货→库存→销售,容易理解。
2.零售的数据最简单:商品编号,商品价格,进货时间,销售时间,销售金额(交易数据,又俗称POS数据,因为使用POS机记录的)
3.几乎所有更复杂的数据,都是以零售为原型,做扩展

零售三要素

人:店员(注意,早期零售是没有会员卡的,人指的是店员)
货:商品(品类、款色、价格、进货数量、库存数量、销售数量)
场:门店(门店等级、面积、装修、货架陈列)
这三个要素之间是并列关系(无法相互取代)所以要单独观察

零售三要素的关键

人、货、场中,货是关键。
因为早期零售店,没有CRM,无法记录到店员、消费者数据,也没法量化记录到卖场的人流、陈列等数据(靠督导巡店,做偶尔的抽查)
货才是核心,进货、入库有数据,出货、销售也有数据。
所以,总销售额 = 销售商品数量*销售商品价格
人效=总销售额/店员人数,坪效=总销售额/门店面积

与货有关的业务流程

在这里插入图片描述

基础指标

在这里插入图片描述

扩展指标

在这里插入图片描述

电商

电商与零售的区别

1.电商能记录页面流量、用户ID(零售很难做到)
2.有了页面流量+用户ID,可以追踪到店铺是否有人,有多少人
3.我们熟知的:GMV=UV*转化率*客单价/销量=用户数*付费率*客单价,其实都是基于电商场景,真正零售店很难有这么全的ID数据

电商的业务流程

在这里插入图片描述如果店铺流量不够,就加强推广,先把流量拉到店铺
如果已经沉淀了一些客人,就关注客人复购情况,拉新/复购一起做
入驻平台和独立站点,最大区别在于对客户掌控能力,尽量拉到私域才好掌控

与零售指标的异同

在这里插入图片描述
采购、库存、促销基本类似
卖场内容有差异,实体店讲门头、陈列、堆头,线上讲页面布局,推广渠道
新增的:流量指标、用户指标

新增:流量购买

类似线下的铺租,线上流量也有成本,也不便宜
cpm(cost per mile):每千次曝光收费(钻展)
cpc (cost per click) :每点击收费(直通车)
cpa (cost per action) :下载等行为收费
cps (cost per sale) :付费次数收费(淘宝客)

新增:成交漏斗

在这里插入图片描述

新增:客户RFM

RFM是以用户ID(非订单)为单位统计,因此只有电商/会员卡零售能做
R:用户最后一次消费距今时间
F:在一定时间内购买频次
M:在一定时间内累计购买量
只用用户ID+订单数据,就能做出来,所以很方面,而且很实用
用户非交易流程数据(页面访问,话题阅读等,后续再分享)

游戏

游戏与电商的区别

1.游戏看似五花八门,其实本质就是卖虚拟商品
2.不同的是,游戏允许玩家在无付费下体验服务,付费项目是额外增加形象/战斗力的。并且,不付费玩家也是付费玩家的体验之一
3.我们熟知的:AARRR其实更适合游戏场景,因为得有人气,付费玩家才玩的爽,所以用户活跃(A)、留存(R)变得很重要。

游戏的业务流程

在这里插入图片描述

由于没有实体商品,所以完全不需要库存,不需要采购,节省大量资金
国内游戏很多都是换皮作品,开发成本低,大量成本消耗在获客上
国内游戏品质差,导致流失严重,因此特别关注留存情况

AARRR解读

在这里插入图片描述

注意,AARRR不是五个指标,是观察的五个方面(而且是并列关系,非漏斗关系)
AARRR适用于游戏这种,允许不付费用户活跃的情况(很多场景并不允许,认为不付费的活跃没有意义)

用户获取(Acquisition)
用户激活(Activation)
用户留存(Retention)
获得收益(Revenue)
推荐传播(Referral)

AARRR细分指标

在这里插入图片描述
在这里插入图片描述

toB

toB与toC的区别

1.toB型业务,下游要么是大客户,要么是经销商,非个人用户
2.toB业务中,大客户很关键,要全力搞掂(不像toC,博概率)、
3.客户采购,是集体决策,考虑价格、性能、交付、资金结算众多因素(toC很简单,冲动型购买多)因此,想搞掂B端客户,需要全方位努力
4.toB业务数字化程度低,需要大量人工操作,因此数据采集少

完整的toB业务流

在这里插入图片描述

注意!最差情况下,只有合同数据

toB的合同,和toC的消费订单看起来很像,似乎也可以做RFM之类的指标BUT,做归做,背后的逻辑完全不一样
toC的大部分消费,都是高频,低金额,客户买了还会再买toB的,客户采购逻辑很复杂(觉得我们便宜、好用、有关系、把我们当鲶鱼的……)
不了解客户逻辑,单纯计算的RFM指标就是废的

toB各阶段,要收集哪些信息(标签/指标)

在这里插入图片描述

toB还要额外收集哪些指标?

如果下游是大客户
• 客户的行业情况(是否行业不行了)
• 客户企业情况(行业可以,但这个客户自己不行了)
• 客户竞争对手(我不做这个客户生意,我还能做哪个)
如果下游是经销商
• 经销商实力(资金情况、门店范围)、信用(履约情况)、合作态度
• 经销商的订货(sell in)/出货(sell out)数据

toB分析,最少拿哪几个指标

在这里插入图片描述

toB分析,最少拿哪几个维度

① 客户行业:是否我司优势行业
② 客户地区:是否客户集中区域
③ 客户企业名:是否行业龙头

交易型一般梳理思路

交易型业务共同点

1.目标清晰:成交
2.流程清晰:进货-库存-销售
3.核心指标清晰:成交金额,成交订单数,商品销售数量
4.核心流程清晰:有过程数据就漏斗分析,没有过程就指标拆解

对比若干种交易型业务,可见4个关键(之一)

关键1:实体商品 & 虚拟商品
实体商品:需要物流、库存、采购,成本很重
进一步的:实体商品,是否耐保存,是否体积很大(生鲜),是否需要复杂的制造过程、售后保养(耐用、汽车)
虚拟商品:研发(互联网产品)、资金(消费金融)、广告(O2O、社交、短视频)

对比若干种交易型业务,可见4个关键(之二)

关键2:线下渠道 & 线上渠道
线下渠道:人、货、场,走起,卖场标签贴起来
线上渠道:漏斗模型走起,投放素材、投放渠道、落地页、转化页

对比若干种交易型业务,可见4个关键(之三)

关键2:toB & toC
toC:RFM、AARRR走起
toB:售前过程中,拿到客户信息、交易流程、客户评价很重要

对比若干种交易型业务,可见4个关键(之四)

关键2:高频 & 低频
高频:啤酒瓜子矿泉水……售后数据很重要,售前给个优惠券
低频:家电、装修、汽车、房子……售前数据很重要,把握用户需求和成交进度

当然,具体的流程可能特别复杂,要具体拆解

定制家具交付全流程,看着特别复杂,要拆开一步步看
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297168.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用友时空KSOA UploadImage任意文件上传漏洞

漏洞描述 用友时空 KSOA 是根据流通企业前沿的IT需求推出的统的IT基础架构,它可以让流通企业各个时期建立的 IT 系统之间彼此轻松对话。由于用友时空设备开放了文件上传功能,但未鉴权且上传的文件类型、大小、格式、路径等方面进行严格的限制和过滤&…

电子电器架构(E/E)演化 —— 主流主机厂域集中架构概述

电子电器架构(E/E)演化 —— 主流主机厂域集中架构概述 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。…

Linux安装及管理程序

一、Linux应用程序管理 1、应用程序与系统命令的关系 1.对比系统命令和应用程序的不同 位置: Linux中一切皆为文件 演示内部命令和外部命令 位置 应用程序位置 用途: 命令主要处理系统的基本操作(复制,配置) 应用程…

前端未死,顺势而生

随着人工智能和低代码的崛起,“前端已死”的声音逐渐兴起。前端已死?尊嘟假嘟?快来发表你的看法吧! 一、“前端已死”因何而来? 在开始讨论之前,首先要明确什么是“前端”。 所谓前端,主要涉及…

CentOS7.6安装Redis6.2.6

Redis安装说明 大多数企业都是基于Linux服务器部署项目,且Redis官方也没有提供Windows版本安装包。因此我们会基于Linux系统来安装Redis.此处选择Linux版本为CentOS 7.6 Redis的官方网站地址:https://redis.io/ 1.单机安装Redis 1.1.安装Redis依赖 …

Unity与Android交互(双端通信)

前言 最近小编开始做关于手部康复的项目,需要Android集成Unity,以Android为主,Unity为辅的开发;上一篇给大家分享了Unity嵌入Android的操作过程,所以今天想给大家分享一下双端通信的知识; 一. Android与Un…

mysql原理--连接查询的成本

1.准备工作 连接查询至少是要有两个表的,只有一个 single_table 表是不够的,所以为了故事的顺利发展,我们直接构造一个和 single_table 表一模一样的 single_table2 表。为了简便起见,我们把 single_table 表称为 s1 表&#xff0…

【动态规划】斐波那契数列模型

欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析(3) 前言 算法原理 1.状态表示 是什么?dp表(一维数组…

[deepspeed]deepspeed安装和测试代码

deepspeed官方对linux系统支持非常好,安装流程较为简单,推荐使用linux系统使用deepspeed.deepspeed由于要使用大模型进行训练和推理,建议显存>24GB。windows上官方不直接支持,但是网上有安装whl文件,只能0.8.3这样老…

Go自定义PriorityQueue优先队列使用Heap堆

题目 分析 每次找最大的,pop出来 然后折半,再丢进去 go写法 go如果想用heap,要实现less\len\swap\push\pop 但可以偷懒,用sort.IntSlice,已经实现了less\len\swap 但由于目前是大根堆,要重写一下less 因此&#xff…

CFA II 考试公式大全 (WILEY’S CFA PROGRAM LEVEL II)

WILEY’S CFA PROGRAM LEVEL II quicksheet, quantitative 和 economics部分 网址:http://deepnlp.org/blog/cfa-ii-quantitative-economics 公式目录: 1.QUANTITATIVE METHODS 1.1 LINEAR REGRESSION-Standard Error of the Estimate LINEAR REGRESSION-Predict…

unity脚本API中OnCollisionEnter()、OnTriggerEnter()二者的区别

Unity中的OnCollisionEnter和OnTriggerEnter两个函数在日常的开发中很常见但也容易混淆,下面说一说两者的区别。 碰撞器(Collider)与触发器(Trigger)的概念 碰撞器(Collider)和触发器&#xff…