高级人工智能之群体智能:蚁群算法

群体智能

鸟群:

鱼群:

1.基本介绍

蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。

蚁群算法的基本步骤

初始化:设置蚂蚁数量、信息素重要程度、启发因子重要程度、信息素的挥发速率和信息素的初始量。

构建解:每只蚂蚁根据概率选择下一个城市,直到完成一次完整的路径。

更新信息素:在每条路径上更新信息素,通常新的信息素量与路径的质量成正比。

迭代:重复构建解和更新信息素的步骤,直到达到预设的迭代次数。

2.公式化蚁群算法

  1. 转移概率 P i j k P_{ij}^k Pijk 表示蚂蚁 k k k从城市 i i i转移到城市 j j j的概率。它是基于信息素强度 τ i j \tau_{ij} τij(信息素重要程度为 α \alpha α和启发式信息 η i j \eta_{ij} ηij)(启发式信息重要程度为 β \beta β )计算的:

    P i j k = [ τ i j ] α ⋅ [ η i j ] β ∑ l ∈ allowed k [ τ i l ] α ⋅ [ η i l ] β P_{ij}^k = \frac{[\tau_{ij}]^\alpha \cdot [\eta_{ij}]^\beta}{\sum_{l \in \text{allowed}_k} [\tau_{il}]^\alpha \cdot [\eta_{il}]^\beta} Pijk=lallowedk[τil]α[ηil]β[τij]α[ηij]β

    其中, allowed k \text{allowed}_k allowedk 是蚂蚁 k k k 可以选择的下一个城市集合。

  2. 信息素更新规则。在每次迭代结束后,所有路径上的信息素会更新。更新规则通常包括信息素的挥发和信息素的沉积:

    τ i j ← ( 1 − ρ ) ⋅ τ i j + Δ τ i j \tau_{ij} \leftarrow (1 - \rho) \cdot \tau_{ij} + \Delta \tau_{ij} τij(1ρ)τij+Δτij

    其中,( ρ \rho ρ ) 是信息素的挥发率,( Δ τ i j \Delta \tau_{ij} Δτij ) 是本次迭代中所有蚂蚁在路径 ( i , j ) (i, j) (i,j) 上留下的信息素总量,通常计算方式为_

    Δ τ i j = ∑ k = 1 m Δ τ i j k \Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^k Δτij=k=1mΔτijk

    而对于每只蚂蚁 k k k ,在路径 ( i , j ) (i, j) (i,j) 上留下的信息素量 Δ τ i j k \Delta \tau_{ij}^k Δτijk 通常与其走过的路径长度成反比:

    Δ τ i j k = { Q L k , if ant  k travels on edge  ( i , j ) 0 , otherwise \Delta \tau_{ij}^k= \begin{cases} \frac{Q}{L_k}, & \text{if ant } k \text{ travels on edge } (i, j) \\ 0, & \text{otherwise} \end{cases} Δτijk={LkQ,0,if ant k travels on edge (i,j)otherwise

    这里, Q Q Q是一个常数, L k L_k Lk是蚂蚁 k k k的路径长度。

  3. 启发式信息 ( η i j \eta_{ij} ηij ) 通常是目标函数的倒数,例如在TSP问题中,它可以是两城市间距离的倒数:

    η i j = 1 d i j \eta_{ij} = \frac{1}{d_{ij}} ηij=dij1

    其中, d i j d_{ij} dij 是城市 i i i j j j 之间的距离。

这些公式构成了蚁群算法的数学基础。通过调整参数 α \alpha α , β \beta β, 和 ρ \rho ρ,可以控制算法的搜索行为,从而适应不同的优化问题。

3.代码实现

import numpy as np
import matplotlib.pyplot as pltclass AntColonyOptimizer:def __init__(self, distances, n_ants, n_best, n_iterations, decay, alpha=1, beta=1):# 初始化参数self.distances = distances  # 城市间的距离矩阵self.pheromone = np.ones(self.distances.shape) / len(distances)  # 初始化信息素矩阵self.all_inds = range(len(distances))  # 所有城市的索引self.n_ants = n_ants  # 蚂蚁数量self.n_best = n_best  # 每轮保留的最佳路径数self.n_iterations = n_iterations  # 迭代次数self.decay = decay  # 信息素的挥发率self.alpha = alpha  # 信息素重要程度self.beta = beta  # 启发因子的重要程度def run(self):# 运行算法shortest_path = Noneshortest_path_length = float('inf')for iteration in range(self.n_iterations):  # 对每次迭代all_paths = self.gen_all_paths()  # 生成所有蚂蚁的路径self.spread_pheromone(all_paths, self.n_best, shortest_path_length)  # 更新信息素shortest_path, shortest_path_length = self.find_shortest_path(all_paths)  # 找到最短路径self.plot_paths(shortest_path, iteration, shortest_path_length)  # 绘制路径return shortest_path, shortest_path_lengthdef gen_path_dist(self, path):# 计算路径长度total_dist = 0for i in range(len(path) - 1):total_dist += self.distances[path[i], path[i+1]]return total_distdef gen_all_paths(self):# 生成所有蚂蚁的路径all_paths = []for _ in range(self.n_ants):path = [np.random.randint(len(self.distances))]  # 选择一个随机起点while len(path) < len(self.distances):move_probs = self.gen_move_probs(path)  # 生成移动概率next_city = np_choice(self.all_inds, 1, p=move_probs)[0]  # 选择下一个城市path.append(next_city)all_paths.append((path, self.gen_path_dist(path)))  # 添加路径和长度return all_pathsdef spread_pheromone(self, all_paths, n_best, shortest_path_length):# 更新信息素sorted_paths = sorted(all_paths, key=lambda x: x[1])  # 按路径长度排序for path, dist in sorted_paths[:n_best]:  # 只取最好的n_best条路径for i in range(len(path) - 1):self.pheromone[path[i], path[i+1]] += 1.0 / self.distances[path[i], path[i+1]]def find_shortest_path(self, all_paths):# 寻找最短路径shortest_path = min(all_paths, key=lambda x: x[1])  # 根据路径长度找到最短的那条return shortest_path[0], shortest_path[1]def gen_move_probs(self, path):# 生成移动概率last_city = path[-1]probs = np.zeros(len(self.distances))for i in self.all_inds:if i not in path:pheromone = self.pheromone[last_city, i] ** self.alphaheuristic = (1.0 / self.distances[last_city, i]) ** self.betaprobs[i] = pheromone * heuristicreturn probs / probs.sum()def plot_paths(self, best_path, iteration, path_length):# 绘制路径plt.figure(figsize=(10, 6))for i in range(len(coords)):  # 绘制所有可能的路径for j in range(i+1, len(coords)):plt.plot([coords[i][0], coords[j][0]], [coords[i][1], coords[j][1]], 'k:', alpha=0.5)for i in range(len(best_path) - 1):  # 绘制最短路径start_city = best_path[i]end_city = best_path[i+1]plt.plot([coords[start_city][0], coords[end_city][0]], [coords[start_city][1], coords[end_city][1]], 'b-', linewidth=2)plt.scatter(*zip(*coords), color='red')  # 标记城市位置for i, coord in enumerate(coords):  # 添加城市标签plt.text(coord[0], coord[1], str(i), color='green')plt.title(f'Iteration: {iteration}, Shortest Path Length: {round(path_length, 2)}')plt.xlabel('X Coordinate')plt.ylabel('Y Coordinate')plt.show()def np_choice(a, size, replace=True, p=None):# numpy的随机选择函数return np.array(np.random.choice(a, size=size, replace=replace, p=p))# 城市坐标
coords = np.random.rand(10, 2)  # 假设有10个城市# 计算距离矩阵
distances = np.zeros((10, 10))
for i in range(10):for j in range(10):distances[i, j] = np.linalg.norm(coords[i] - coords[j])  # 使用欧几里得距离# 运行蚁群算法
aco = AntColonyOptimizer(distances, n_ants=10, n_best=5, n_iterations=100, decay=0.5, alpha=1, beta=2)
path, dist = aco.run()

执行结果:


. . . . . . ...... ......

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297587.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web架构师编辑器内容-使用html2canvas获取截图,并处理一些问题

html2canvas-api 为了使用html2canvas完成截图的功能&#xff0c;我们首先先使用一个按钮来测试一下html2canvas的截图功能。 首先在页面上创建一个img标签 <img id"test-image" :style"{ width: 300px}"/>创建一个button按钮&#xff0c;添加点击…

猫头虎带您探索Go语言的魅力:GoLang程序员必备的第三方库大盘点 ‍ ‍

猫头虎带您探索Go语言的魅力&#xff1a;GoLang程序员必备的第三方库大盘点 ‍ &#x1f680;&#x1f431;‍&#x1f4bb; 博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#x…

接口测试的持续集成的工具(git代码管理工具,jenkins持续集成)

持续集成的概念&#xff1a;大白话就是持续的做一件事情&#xff0c;使其使用起来更加流畅&#xff1b;结合测试来讲就是说用工具管理好代码的同时&#xff0c;使代码运行的更加自动以及智能&#xff1b;提升测试效率。 ⽹址&#xff1a;https://git-scm.com/downloads 长这个…

尚硅谷 java 2023(基础语法)笔记

一、变量与运算符 1、HelloWorld的编写和执行 class HelloChina{public static void main(String[] args){System.out.println("hello,world!!你好&#xff0c;中国&#xff01;");} } 总结&#xff1a; 1. Java程序编写和执行的过程&#xff1a; 步骤1&#xff1…

哈希三道题

两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现。 你可以按任意…

AIGC:大语言模型LLM的幻觉问题

引言 在使用ChatGPT或者其他大模型时&#xff0c;我们经常会遇到模型答非所问、知识错误、甚至自相矛盾的问题。 虽然大语言模型&#xff08;LLMs&#xff09;在各种下游任务中展示出了卓越的能力&#xff0c;在多个领域有广泛应用&#xff0c;但存在着幻觉的问题&#xff1a…

esp32使用lvgl,给图片取模显示图片

使用LVGL官方工具。 https://lvgl.io/tools/imageconverter 上传图片&#xff0c;如果想要透明效果&#xff0c;那么选择 输出格式C array&#xff0c;点击Convert进行转换。 下载.c文件放置到工程下使用即可。

EFCore8分析类图映射到代码和数据库的示例

借用微软EFCore8官方的示例&#xff0c;我画了张类图&#xff1a; blog&#xff08;博客&#xff09;与Post&#xff08;文章&#xff09;是1对多的关系&#xff0c;显式表达出两者间是双向导航&#xff1a;双方都可见。 Post&#xff08;文章&#xff09;与Tag&#xff08;标…

1.数字反转

题目 AC import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt();if(n>0) {StringBuilder str new StringBuilder();str.append(n);StringBuilder str1 str.reverse();String st…

oss文件操作(文件列举、文件大小)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

微服务实战系列之Dubbo(上)

前言 随着一年一度冬至的到来&#xff0c;2023的步伐也将远去。而博主的系列文章&#xff0c;也将从今天起&#xff0c;越来越聚焦如何构建微服务“内核”上。前序系列文章几乎囊括了微服务的方方面面&#xff0c;无论使用什么框架、组件或工具&#xff0c;皆可拿来用之。 那么…

DaVinci各版本安装指南

链接: https://pan.baidu.com/s/1g1kaXZxcw-etsJENiW2IUQ?pwd0531 ​ #2024版 1.鼠标右击【DaVinci_Resolve_Studio_18.5(64bit)】压缩包&#xff08;win11及以上系统需先点击“显示更多选项”&#xff09;【解压到 DaVinci_Resolve_Studio_18.5(64bit)】。 2.打开解压后的文…