智能优化算法应用:基于侏儒猫鼬算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于侏儒猫鼬算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于侏儒猫鼬算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.侏儒猫鼬算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用侏儒猫鼬算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.侏儒猫鼬算法

侏儒猫鼬算法原理请参考:https://blog.csdn.net/u011835903/article/details/127455123
侏儒猫鼬算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

侏儒猫鼬算法参数如下:

%% 设定侏儒猫鼬优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明侏儒猫鼬算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297687.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能算法(GA、DBO等)求解零空闲流水车间调度问题(NIFSP)

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年…

Stable Diffusion 基本原理

1 Diffusion Model的运作过程 输入一张和我们所需结果图尺寸一致的噪声图像,通过Denoise模块逐步减少noise,最终生成我们需要的效果图。 图中Denoise模块虽然是同一个,但是它会根据不同step的输入图像和代表noise严重程度的参数选择denoise的…

比亚迪王朝B级SUV新旗舰起航

12月15日宋L正式投入市场,这也宣告着比亚迪王朝品牌全新的里程碑。作为宋家族中定位稍高的L级车型,宋L本次一共上市推出了4款后驱车型和1款四驱车型。其中后驱车型的电机功率从200kW至380kW不等,续航里程最大可达662公里,满足不同…

MYSQL函数\约束\多表查询\事务

函数 字符串函数 数值函数 mod就是取余 日期函数 流程函数 约束 外键约束 删除更新\外键 多表查询 多表关系 一对多 多对多 一对一 多表查询 内连接 select e.name d.name from emp e join dept d on e.id d.id; 外连接 select emp.*, d.name from emp left join tm…

nacos配置中心配置已经常见错误总结

💻目录 前言1、基础架构2、依赖3、配置文件3.1、bolg-product配置文件3.1.1、application.yml配置文件3.1.2、bootstrap.yml配置文件3.1.3、nacos远程配置 3.2、bolg-system3.1.1、application.yml配置文件3.1.2、bootstrap.yml配置文件3.2.3、nacos远程配置 4、测试…

PHP代码审计之反序列化攻击链CVE-2019-6340漏洞研究

关键词 php 反序列化 cms Drupal CVE-2019-6340 DrupalKernel 前言 简简单单介绍下php的反序列化漏洞 php反序列化漏洞简单示例 来看一段简单的php反序列化示例 <?phpclass pingTest {public $ipAddress "127.0.0.1";public $isValid False;public $output…

设计模式--外观模式

实验12&#xff1a;外观模式 本次实验属于模仿型实验&#xff0c;通过本次实验学生将掌握以下内容&#xff1a; 1、理解外观模式的动机&#xff0c;掌握该模式的结构&#xff1b; 2、能够利用外观模式解决实际问题。 [实验任务]&#xff1a;计算机开启 在计算机主机(Main…

RT-Thread简介

RT-Thread简介 RT-Thread是一款完全由国内团队开发维护的嵌入式实时操作系统&#xff08;RTOS&#xff09;&#xff0c;具有完全的自主知识产权。 经过16个年头的沉淀&#xff0c;伴随着物联网的兴起&#xff0c;它正演变成一个功能强大、组件丰富的物联网操作系统。 RT-Thre…

本地搜索文件太慢怎么办?用Everything搜索秒出结果(附安装包)

每次用电脑本地的搜索都慢的一批&#xff0c;后来发现了一个搜索利器 基本上搜索任何文件都不用等待。 并且页面非常简洁&#xff0c;也没有任何广告&#xff0c;用起来非常舒服。 软件官网如下&#xff1a; voidtools 官网提供三个版本&#xff0c;用起来差别不大。 网盘链…

基于电商场景的高并发RocketMQ实战-Broker高并发消息写入、读写队列原理分析

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 【11来了】文章导读地址&#xff1a;点击查看文章导读&#xff01; &#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f341;&#x1f3…

Github 2023-12-24 开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2023-12-24统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目5Jupyter Notebook项目2C项目1C项目1Go项目1Java项目1JavaScript项目1Ruby项目1 Serverless Frame…

Vue3中的混入(mixins)

本文主要介绍Vue3中的混入&#xff08;mixins&#xff09;。 目录 一、在普通写法中使用混入&#xff1a;二、在setup写法中使用混入&#xff1a; 混入是Vue中一种用于在组件中共享可复用功能的特性。在Vue 3中&#xff0c;混入的使用方式有所改变。 一、在普通写法中使用混入…