java并发编程十 原子累加器和Unsafe

文章目录

    • 原子累加器
      • cas 锁
      • 原理之伪共享
    • Unsafe
      • Unsafe CAS 操作

原子累加器

累加器性能比较

private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {T adder = adderSupplier.get();long start = System.nanoTime();List<Thread> ts = new ArrayList<>();// 4 个线程,每人累加 50 万
for (int i = 0; i < 40; i++) {ts.add(new Thread(() -> {for (int j = 0; j < 500000; j++) {action.accept(adder);}}));}ts.forEach(t -> t.start());ts.forEach(t -> {try {t.join();} 
catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(adder + " cost:" + (end - start)/1000_000);}

比较 AtomicLong 与 LongAdder

 for (int i = 0; i < 5; i++) {demo(() -> new LongAdder(), adder -> adder.increment());}for (int i = 0; i < 5; i++) {demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());}

输出

1000000 cost:43 
1000000 cost:9 
1000000 cost:7 
1000000 cost:7 
1000000 cost:7 
1000000 cost:31 
1000000 cost:27 
1000000 cost:28 
1000000 cost:24 
1000000 cost:22 

性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]… 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性
能。

  • 源码之 LongAdder
    LongAdder 是并发大师 @author Doug Lea 的作品,设计的非常精巧
    LongAdder 类有几个关键域
// 累加单元数组, 懒惰初始化
transient volatile Cell[] cells;// 基础值, 如果没有竞争, 则用 cas 累加这个域
transient volatile long base;// 在 cells 创建或扩容时, 置为 1, 表示加锁
transient volatile int cellsBusy;

cas 锁

// 不要用于实践!!!
public class LockCas {private AtomicInteger state = new AtomicInteger(0);public void lock() {while (true) {if (state.compareAndSet(0, 1)) {break;}}}public void unlock() {log.debug("unlock...");state.set(0);}
}

测试

LockCas lock = new LockCas();new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");sleep(1);} 
finally {lock.unlock();}}).start();new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");} 
finally {lock.unlock();}}).start();

输出

18:27:07.198 c.Test42 [Thread-0] - begin... 
18:27:07.202 c.Test42 [Thread-0] - lock... 
18:27:07.198 c.Test42 [Thread-1] - begin... 
18:27:08.204 c.Test42 [Thread-0] - unlock... 
18:27:08.204 c.Test42 [Thread-1] - lock... 
18:27:08.204 c.Test42 [Thread-1] - unlock... 

原理之伪共享

其中 Cell 即为累加单元

// 防止缓存行伪共享
@sun.misc.Contended 
static final class Cell {volatile long value;Cell(long x) { value = x; }// 最重要的方法, 用来 cas 方式进行累加, prev 表示旧值, next 表示新值
final boolean cas(long prev, long next) {return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next);}// 省略不重要代码
}

得从缓存说起
缓存与内存的速度比较
在这里插入图片描述

从 cpu 到大约需要的时钟周期
寄存器1 cycle (4GHz 的 CPU 约为0.25ns)
L13~4 cycle
L210~20 cycle
L340~45 cycle
内存120~240 cycle

因为 CPU 与 内存的速度差异很大,需要靠预读数据至缓存来提升效率。
而缓存以缓存行为单位,每个缓存行对应着一块内存,一般是 64 byte(8 个 long)
缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中
CPU 要保证数据的一致性,如果某个 CPU 核心更改了数据,其它 CPU 核心对应的整个缓存行必须失效
在这里插入图片描述

因为 Cell 是数组形式,在内存中是连续存储的,一个 Cell 为 24 字节(16 字节的对象头和 8 字节的 value),因此缓存行可以存下 2 个的 Cell 对象。这样问题来了:

  • Core-0 要修改 Cell[0]
  • Core-1 要修改 Cell[1]
    论谁修改成功,都会导致对方 Core 的缓存行失效,比如 Core-0 中 Cell[0]=6000, Cell[1]=8000 要累加Cell[0]=6001, Cell[1]=8000 ,这时会让 Core-1 的缓存行失效
    @sun.misc.Contended 用来解决这个问题,它的原理是在使用此注解的对象或字段的前后各增加 128 字节大小的padding,从而让 CPU 将对象预读至缓存时占用不同的缓存行,这样,不会造成对方缓存行的失效
    在这里插入图片描述

累加主要调用下面的方法

public void add(long x) {// as 为累加单元数组
// b 为基础值
// x 为累加值
Cell[] as; long b, v; int m; Cell a;// 进入 if 的两个条件
// 1. as 有值, 表示已经发生过竞争, 进入 if
// 2. cas 给 base 累加时失败了, 表示 base 发生了竞争, 进入 ifif ((as = cells) != null || !casBase(b = base, b + x)) {// uncontended 表示 cell 没有竞争
boolean uncontended = true;if (// as 还没有创建
as == null || (m = as.length - 1) < 0 ||// 当前线程对应的 cell 还没有(a 
= as[getProbe() & m]) == null ||// cas 给当前线程的 cell 累加失败 uncontended=false ( a 为当前线程的 cell )!(uncontended = a.cas(v = a.value, v + x))) {// 进入 cell 数组创建、cell 创建的流程longAccumulate(x, null, uncontended);}}}

add 流程图
在这里插入图片描述

final void longAccumulate(long x, LongBinaryOperator fn,boolean wasUncontended) {int h;// 当前线程还没有对应的 cell, 需要随机生成一个 h 值用来将当前线程绑定到 cellif ((h = getProbe()) == 0) {// 初始化 probeThreadLocalRandom.current();// h 对应新的 probe 值, 用来对应 cellh = getProbe();wasUncontended = true;}// collide 为 true 表示需要扩容
boolean collide = false;                
for (;;) {Cell[] as; Cell a; int n; long v;// 已经有了 cellsif ((as = cells) != null && (n = as.length) > 0) {// 还没有 cellif ((a = as[(n - 1) & h]) == null) {// 为 cellsBusy 加锁, 创建 cell, cell 的初始累加值为 x// 成功则 break, 否则继续 continue 循环}// 有竞争, 改变线程对应的 cell 来重试 caselse if (!wasUncontended)wasUncontended = true;// cas 尝试累加, fn 配合 LongAccumulator 不为 null, 配合 LongAdder 为 nullelse if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x))))break;// 如果 cells 长度已经超过了最大长度, 或者已经扩容, 改变线程对应的 cell 来重试 caselse if (n >= NCPU || cells != as)collide = false;// 确保 collide 为 false 进入此分支, 就不会进入下面的 else if 进行扩容了
else if (!collide)collide = true;// 加锁
else if (cellsBusy == 0 && casCellsBusy()) {// 加锁成功, 扩容
continue;}// 改变线程对应的 cellh = advanceProbe(h);}// 还没有 cells, 尝试给 cellsBusy 加锁
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {// 加锁成功, 初始化 cells, 最开始长度为 2, 并填充一个 cell// 成功则 break;}// 上两种情况失败, 尝试给 base 累加
else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))break;}}

longAccumulate 流程图
在这里插入图片描述

在这里插入图片描述

每个线程刚进入 longAccumulate 时,会尝试对应一个 cell 对象(找到一个坑位)
在这里插入图片描述

获取最终结果通过 sum 方法

public long sum() {Cell[] as = cells; Cell a;long sum = base;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;}

Unsafe

概述
Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得

public class UnsafeAccessor {static Unsafe unsafe;static {try {            
Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} 
catch (NoSuchFieldException | IllegalAccessException e) {throw new Error(e);}}static Unsafe getUnsafe() {return unsafe;}}

Unsafe CAS 操作

@Dataclass Student {volatile int id;volatile String name;}
 Unsafe unsafe = UnsafeAccessor.getUnsafe();Field id = Student.class.getDeclaredField("id");Field name = Student.class.getDeclaredField("name");// 获得成员变量的偏移量
long idOffset = UnsafeAccessor.unsafe.objectFieldOffset(id);long nameOffset = UnsafeAccessor.unsafe.objectFieldOffset(name);Student student = new Student();// 使用 cas 方法替换成员变量的值
UnsafeAccessor.unsafe.compareAndSwapInt(student, idOffset, 0, 20);  // 返回 trueUnsafeAccessor.unsafe.compareAndSwapObject(student, nameOffset, null, "张三"); // 返回 trueSystem.out.println(student);

输出

Student(id=20, name=张三) 

使用自定义的 AtomicData 实现之前线程安全的原子整数 Account 实现

class AtomicData {private volatile int data;static final Unsafe unsafe;static final long DATA_OFFSET;static {unsafe = UnsafeAccessor.getUnsafe();try {// data 属性在 DataContainer 对象中的偏移量,用于 Unsafe 直接访问该属性
DATA_OFFSET = unsafe.objectFieldOffset(AtomicData.class.getDeclaredField("data"));} 
catch (NoSuchFieldException e) {throw new Error(e);}}public AtomicData(int data) {this.data = data;}public void decrease(int amount) {int oldValue;while(true) {// 获取共享变量旧值,可以在这一行加入断点,修改 data 调试来加深理解
oldValue = data;// cas 尝试修改 data 为 旧值 + amount,如果期间旧值被别的线程改了,返回 falseif (unsafe.compareAndSwapInt(this, DATA_OFFSET, oldValue, oldValue - amount)) {return;}}}public int getData() {return data;}}

Account 实现

Account.demo(new Account() {AtomicData atomicData = new AtomicData(10000);@Overridepublic Integer getBalance() {return atomicData.getData();}@Overridepublic void withdraw(Integer amount) {atomicData.decrease(amount);}});

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297814.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式开发——DMA外设到内存

学习目标 加强理解DMA数据传输过程加强掌握DMA的初始化流程掌握DMA数据表查询理解源和目标的配置理解数据传输特点能够动态配置源数据学习内容 需求 uint8_t data; 串口接收(&data);data有数据了 实现串口的数据接收,要求采用dma的方式。 数据交互流程 CPU配置好DMA外…

基于Java+SpringMvc+Vue求职招聘系统详细设计实现

基于JavaSpringMvcVue求职招聘系统详细设计实现 &#x1f345; 作者主页 专业程序开发 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; 文章目录 基于JavaSpringMvcVue求职招聘系统详细设计实现一、前言介…

鸿蒙开发语言介绍--ArkTS

1.编程语言介绍 ArkTS是HarmonyOS主力应用开发语言。它在TypeScript (简称TS)的基础上&#xff0c;匹配ArkUI框架&#xff0c;扩展了声明式UI、状态管理等相应的能力&#xff0c;让开发者以更简洁、更自然的方式开发跨端应用。 2.TypeScript简介 自行补充TypeScript知识吧。h…

【MySQL学习笔记008】多表查询

1、多表关系 概述&#xff1a;项目开发中&#xff0c;在进行数据库表结构设计时&#xff0c;会根据业务需求及业务模块之间的关系&#xff0c;分析并设计表结构&#xff0c;由于业务之间相互关联&#xff0c;所以各个表结构之间也存在着各种联系&#xff0c;基本上可分为三种&a…

WT2605C高品质音频蓝牙语音芯片:外接功放实现双声道DAC输出的优势

在音频处理领域&#xff0c;双声道DAC输出能够提供更为清晰、逼真的音效&#xff0c;增强用户的听觉体验。针对这一需求&#xff0c;唯创知音的WT2605C高品质音频蓝牙语音芯片&#xff0c;通过外接功放实现双声道DAC输出&#xff0c;展现出独特的应用优势。 一、高品质音频处理…

企业计算机服务器中了babyk勒索病毒怎么办,babyk勒索病毒解密数据恢复

在数字化的今天&#xff0c;网络安全威胁不断增加&#xff0c;给企业的生产生活带来了严重影响&#xff0c;使得企业不得不重视数据安全问题。近日&#xff0c;云天数据恢复中心接到企业求助&#xff0c;企业的计算机服务器中了babyk勒索病毒&#xff0c;导致企业所有计算机系统…

论文降重方法同义词替换的效果对比与评价 快码论文

大家好&#xff0c;今天来聊聊论文降重方法同义词替换的效果对比与评价&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff0c;可以借助此类工具&#xff1a; 标题&#xff1a;论文降重方法同义词替换的效果对比…

使用travelbook架设自己的实时位置共享服务

travelbook 是一款开源的安卓APP&#xff0c;它能以低功耗提供实时位置共享&#xff0c;它包含功能如下&#xff1a; 好友之间分享实时位置&#xff1b;记录行程轨迹&#xff1b;标记收藏地点&#xff1b; 这款软件的主要解决的问题包括&#xff1a; 场景1&#xff1a;查看老…

Ps:直方图 - 统计数据

使用扩展视图或全部通道视图时&#xff0c;直方图 Histogram的下方会显示一组实时统计数据。 提示&#xff1a; 要在直方图面板控制菜单中勾选&#xff08;默认&#xff09;“显示统计数据” Show Statistics。 源 Source --整个图像 Entire Image 默认选项。显示整个图像&am…

Apache Superset如何实现无公网ip实时远程访问本地数据【内网穿透】

文章目录 前言1. 使用Docker部署Apache Superset1.1 第一步安装docker 、docker compose1.2 克隆superset代码到本地并使用docker compose启动 2. 安装cpolar内网穿透&#xff0c;实现公网访问3. 设置固定连接公网地址 前言 Superset是一款由中国知名科技公司开源的“现代化的…

MySQL的事务-原子性

MySQL的事务处理具有ACID的特性&#xff0c;即原子性&#xff08;Atomicity)、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09;。 1. 原子性指的是事务中所有操作都是原子性的&#xff0c;要…

第十四节TypeScript 联合类型

1、简介 联合类型可以通过管道&#xff08;|&#xff09;将变量设置多种类型&#xff0c;赋值时可以根据设置的类型来赋值。 注意&#xff1a;只能赋值指定的类型&#xff0c;如果赋值其它类型就会报错的。 2、创建联合类型的语法格式&#xff1a; Type1|Type2|Type3 实例&a…