智能优化算法应用:基于食肉植物算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于食肉植物算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于食肉植物算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.食肉植物算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用食肉植物算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.食肉植物算法

食肉植物算法原理请参考:https://blog.csdn.net/u011835903/article/details/125921790
食肉植物算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

食肉植物算法参数如下:

%% 设定食肉植物优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明食肉植物算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297857.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ISP 状态机轮转和bubble恢复机制

1 ISP的中断类型 ISP中断类型 SOF: 一帧图像数据开始传输 EOF: 一帧图像数据传输完成 REG_UPDATE: ISP寄存器更新完成(每个reg group都有独立的这个中断) EPOCH: ISP某一行结尾(默认20)就会产生此中断 BUFFER DONE: 一帧图像数据ISP完全写到DDR了 2 ISP驱动状态机 通过camer…

java八股 redis

Redis篇-01-redis开篇_哔哩哔哩_bilibili 1.缓存穿透 2.缓存击穿 逻辑过期里的互斥锁是为了保证只有一个线程去缓存重建 3.缓存雪崩 4.双写一致性 4.1要求一致性(延迟双删/互斥锁) 延迟双删无法保证强一致性 那么前两步删缓和更新数据库哪个先呢&#xf…

车手互联是不是杀手锏,来听听一家头部手机厂的座舱方法论

作者 |Amy 编辑 |德新 十年前, 苹果CarPlay和谷歌Android Auto相继推出,手机与车机两个此前貌似无关的品类,从此开始产生交集。 科技巨头看好车机的硬生态,汽车大鳄们则垂涎于科技圈的软实力。 CarPlay和Android Auto的出现&am…

锐捷配置重发布RIP进OSPF中

一、实验拓扑 二、实验目的 使用两种动态路由协议,并使两种协议间的路由可以传递 三、实验配置 第一步:配置全网基本IP R1 Ruijie>enable Ruijie#configure terminal Ruijie(config)#interface gigabitEthernet 0/0 Ruijie(config-if-GigabitEthe…

使用 Postman 进行并发请求:实用教程与最佳实践

背景介绍 最近,我们发起了一个在线图书管理系统的项目。我负责的一个关键模块包括三个主要后台接口: 实现对books数据的检索。实施对likes数据的获取。通过collections端点访问数据。 应对高流量的挑战 在设计并部署接口时,我们不可避免地…

基于计算机视觉的棋盘图像识别

本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。最终的应用程序会保存整个图像并可视化的表现出来,同时输出…

Java多线程技术四——定时器

1 定时器的使用 在JDK库中Timer类主要负责计划任务的功能,也就是在指定的时间开始执行某一个任务,Timer类的方法列表如下: Timer类的主要作用就是设置计划任务,封装任务的类却是TimerTask,该类的结构如下图 因为TimerT…

Http---查看HTTP协议的通信过程

1. 谷歌浏览器开发者工具的使用 首先需要安装Google Chrome浏览器,然后Windows和Linux平台按F12调出开发者工具, mac OS选择 视图 -> 开发者 -> 开发者工具或者直接使用 altcommandi 这个快捷键,还有一个多平台通用的操作就是在网页右击选择检查。…

uni-app 工程目录结构介绍

锋哥原创的uni-app视频教程: 2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版),火爆更新中...共计23条视频,包括:第1讲 uni…

Vue2从源码角度来回答一些常见的问题

1.请说一下Vue2响应式数据的理解(先知道基本的问题在哪里,源码的角度来回答,用的时候会有哪些问题) 可以监控一个数据的修改和获取操作。针对对象格式会给每个对象的属性进行劫持 Object.defineProperty 源码层面 initData ->…

嵌入式开发——PWM高级定时器

学习目标 加强掌握PWM开发流程理解定时器与通道的关系掌握多通道配置策略掌握互补PWM配置策略掌握定时器查询方式掌握代码抽取优化策略掌握PWM调试方式学习内容 需求 点亮8个灯,采用pwm的方式。 定时器 通道 <

5种经典排序算法,每个程序员都应该知道

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 有没有想过当您应用从低到高、从高到低或按字母顺序等过滤器时&#xff0c;亚马逊或任何其他电子商务网站中的产品如何排序&#xff1f;排序算法对于此类网站起着至…