快速入门学习定时任务框架-xxljob

定时任务框架-xxljob

简介

主要用于分布式任务调度,可以将任务调度和执行分布在多个节点上。它提供了一个集中式的管理平台,支持动态添加、修改、删除任务,以及任务的分片执行,确保任务在分布式环境中的高可用性的一个框架

spring传统的定时任务@Scheduled,但是这样存在这一些问题 :

  • 做集群任务的重复执行问题

  • cron表达式定义在代码之中,修改不方便

  • 定时任务失败了,无法重试也没有统计

  • 如果任务量过大,不能有效的分片执行

解决这些问题的方案为:

xxl-job 分布式任务调度框架

2.分布式任务调度

2.1 什么是分布式任务调度

当前软件的架构已经开始向分布式架构转变,将单体结构拆分为若干服务,服务之间通过网络交互来完成业务处理。在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度

在这里插入图片描述

将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:

1、并行任务调度

并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。

如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。

2、高可用

若某一个实例宕机,不影响其他实例来执行任务。

3、弹性扩容

当集群中增加实例就可以提高并执行任务的处理效率。

4、任务管理与监测

对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。

分布式任务调度面临的问题:

当任务调度以集群方式部署,同一个任务调度可能会执行多次,例如:电商系统定期发放优惠券,就可能重复发放优惠券,对公司造成损失,信用卡还款提醒就会重复执行多次,给用户造成烦恼,所以我们需要控制相同的任务在多个运行实例上只执行一次。常见解决方案:

  • 分布式锁,多个实例在任务执行前首先需要获取锁,如果获取失败那么就证明有其他服务已经在运行,如果获取成功那么证明没有服务在运行定时任务,那么就可以执行。
  • ZooKeeper选举,利用ZooKeeper对Leader实例执行定时任务,执行定时任务的时候判断自己是否是Leader,如果不是则不执行,如果是则执行业务逻辑,这样也能达到目的。

2.2 xxl-Job简介

针对分布式任务调度的需求,市场上出现了很多的产品:

1) TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。

2) XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

3)Elastic-job:当当网借鉴TBSchedule并基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,具有任务高可用以及分片功能。

4)Saturn: 唯品会开源的一个分布式任务调度平台,基于Elastic-job,可以全域统一配置,统一监
控,具有任务高可用以及分片功能。

XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

源码地址:https://gitee.com/xuxueli0323/xxl-job

文档地址:https://www.xuxueli.com/xxl-job/

特性

  • 简单灵活
    提供Web页面对任务进行管理,管理系统支持用户管理、权限控制;
    支持容器部署;
    支持通过通用HTTP提供跨平台任务调度;
  • 丰富的任务管理功能
    支持页面对任务CRUD操作;
    支持在页面编写脚本任务、命令行任务、Java代码任务并执行;
    支持任务级联编排,父任务执行结束后触发子任务执行;
    支持设置指定任务执行节点路由策略,包括轮询、随机、广播、故障转移、忙碌转移等;
    支持Cron方式、任务依赖、调度中心API接口方式触发任务执行
  • 高性能
    任务调度流程全异步化设计实现,如异步调度、异步运行、异步回调等,有效对密集调度进行流量削峰;
  • 高可用
    任务调度中心、任务执行节点均 集群部署,支持动态扩展、故障转移
    支持任务配置路由故障转移策略,执行器节点不可用是自动转移到其他节点执行
    支持任务超时控制、失败重试配置
    支持任务处理阻塞策略:调度当任务执行节点忙碌时来不及执行任务的处理策略,包括:串行、抛弃、覆盖策略
  • 易于监控运维
    支持设置任务失败邮件告警,预留接口支持短信、钉钉告警;
    支持实时查看任务执行运行数据统计图表、任务进度监控数据、任务完整执行日志;

2.3 XXL-Job-环境搭建

2.3.1 调度中心环境要求
  • Maven3+
  • Jdk1.8+
  • Mysql5.7+
2.3.2 源码仓库地址
源码仓库地址Release Download
https://github.com/xuxueli/xxl-jobDownload
http://gitee.com/xuxueli0323/xxl-jobDownload

也可以使用资料文件夹中的源码

2.3.3 初始化“调度数据库”

请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。

位置:/xxl-job/doc/db/tables_xxl_job.sql 共8张表

在这里插入图片描述

- xxl_job_lock:任务调度锁表;
- xxl_job_group:执行器信息表,维护任务执行器信息;
- xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
- xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
- xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
- xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
- xxl_job_user:系统用户表;

调度中心支持集群部署,集群情况下各节点务必连接同一个mysql实例;

如果mysql做主从,调度中心集群节点务必强制走主库;

2.3.4 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:

在这里插入图片描述

2.3.5 配置部署“调度中心”

调度中心项目:xxl-job-admin

作用:统一管理任务调度平台上调度任务,负责触发调度执行,并且提供任务管理平台。

步骤一:调度中心配置

调度中心配置文件地址:/xxl-job/xxl-job-admin/src/main/resources/application.properties

数据库的连接信息修改为自己的数据库

### web
server.port=8888
server.servlet.context-path=/xxl-job-admin### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.############# mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?Unicode=true&serverTimezone=Asia/Shanghai&characterEncoding=UTF-8
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory### xxl-job, access token
xxl.job.accessToken=### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100### xxl-job, log retention days
xxl.job.logretentiondays=30

启动调度中心,默认登录账号 “admin/123456”, 登录后运行界面如下图所示。

在这里插入图片描述

2.4 配置部署调度中心-docker安装

1.创建mysql容器,初始化xxl-job的SQL脚本

docker run -p 3306:3306 --name mysql57 \
-v /opt/mysql/conf:/etc/mysql \
-v /opt/mysql/logs:/var/log/mysql \
-v /opt/mysql/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7

2.拉取镜像

docker pull xuxueli/xxl-job-admin:2.3.1

3.创建容器 启动之前把源码项目的那几张表导入数据库
在这里插入图片描述

在这里插入图片描述

docker run -e PARAMS="--spring.datasource.url=jdbc:mysql://192.168.200.130:3306/xxl_job?Unicode=true&characterEncoding=UTF-8 \
--spring.datasource.username=root \
--spring.datasource.password=root" \
-p 8888:8080 -v /tmp:/data/applogs \
--name xxl-job-admin --restart=always  -d xuxueli/xxl-job-admin:2.3.1

2.5 xxl-job入门案例编写

2.5.1 登录调度中心,点击下图所示“新建任务”按钮,新建示例任务

在这里插入图片描述

  • 执行器是在执行器管理中创建的
    在这里插入图片描述

  • jobhandler是代码中使用@bean方式注入的任务处理器
    在这里插入图片描述

  • 其他的cron表达式,还有处理方式和Spring提供的@Schedule一样

2.5.2 创建xxljob-demo项目,导入依赖
<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!--xxl-job--><dependency><groupId>com.xuxueli</groupId><artifactId>xxl-job-core</artifactId><version>2.3.1</version></dependency>
</dependencies>
2.5.3 application.yml配置
server:port: 8881xxl:job:admin:addresses: http://192.168.200.130:8888/xxl-job-adminexecutor://服务注册该执行器的端口 如果有多个服务需要执行器,保证执行器端口不同即可appname: xxl-job-executor-sampleport: 9999
2.5.4 新建配置类
package com.heima.xxljob.config;import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;/*** xxl-job config** @author xuxueli 2017-04-28*/
@Configuration
public class XxlJobConfig {private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);@Value("${xxl.job.admin.addresses}")private String adminAddresses;@Value("${xxl.job.executor.appname}")private String appname;@Value("${xxl.job.executor.port}")private int port;@Beanpublic XxlJobSpringExecutor xxlJobExecutor() {logger.info(">>>>>>>>>>> xxl-job config init.");XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();xxlJobSpringExecutor.setAdminAddresses(adminAddresses);xxlJobSpringExecutor.setAppname(appname);xxlJobSpringExecutor.setPort(port);return xxlJobSpringExecutor;}}
2.5.4 任务代码,重要注解:@XxlJob(“JobHandler”)

注册任务执行器

package com.heima.xxljob.job;import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;@Component
public class HelloJob {@XxlJob("demoJobHandler")public void helloJob(){System.out.println("简单任务执行了。。。。");}
}
2.5.5 测试-单节点
  • 启动微服务

  • 在xxl-job的调度中心中启动任务
    -成功过后日志可以查看详细
    在这里插入图片描述

2.6 任务详解-执行器

  • 执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能;

  • 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器

  • 不同类型任务给与不同执行器名字进行分组管理

在这里插入图片描述

在这里插入图片描述

以下是执行器的属性说明:

属性名称说明
AppName是每个执行器集群的唯一标示AppName, 执行器会周期性以AppName为对象进行自动注册。可通过该配置自动发现注册成功的执行器, 供任务调度时使用;
名称执行器的名称, 因为AppName限制字母数字等组成,可读性不强, 名称为了提高执行器的可读性;
排序执行器的排序, 系统中需要执行器的地方,如任务新增, 将会按照该排序读取可用的执行器列表;
注册方式调度中心获取执行器地址的方式;
机器地址注册方式为"手动录入"时有效,支持人工维护执行器的地址信息;

自动注册和手动注册的区别和配置

2.7 任务详解-基础配置

在这里插入图片描述

基础配置

  • 执行器:每个任务必须绑定一个执行器, 方便给任务进行分组

  • 任务描述:任务的描述信息,便于任务管理;

  • 负责人:任务的负责人;

  • 报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔

在这里插入图片描述

调度配置

  • 调度类型:
    • 无:该类型不会主动触发调度;
    • CRON:该类型将会通过CRON,触发任务调度;
    • 固定速度:该类型将会以固定速度,触发任务调度;按照固定的间隔时间,周期性触发;
      在这里插入图片描述

任务配置

  • 运行模式:

​ BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 “JobHandler” 属性匹配执行器中任务;

  • JobHandler:运行模式为 “BEAN模式” 时生效,对应执行器中新开发的JobHandler类“@JobHandler”注解自定义的value值;

  • 在这里插入图片描述

  • 执行参数:任务执行所需的参数;

阻塞处理策略

阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;

  • 单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO(First Input First Output)队列并以串行方式运行;

  • 丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;

  • 覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;

在这里插入图片描述

路由策略

当执行器集群部署时,提供丰富的路由策略,包括;

  • FIRST(第一个):固定选择第一个机器;

  • LAST(最后一个):固定选择最后一个机器;

  • ROUND(轮询)

  • RANDOM(随机):随机选择在线的机器;

  • CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  • LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  • LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  • FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  • BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  • SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

在这里插入图片描述

2.8 路由策略(轮询)-案例

1.修改任务为轮询

在这里插入图片描述

2.启动多个微服务

在这里插入图片描述

修改yml配置文件

server:port: ${port:8881}xxl:job:admin:addresses: http://192.168.200.130:8888/xxl-job-adminexecutor:appname: xxl-job-executor-sampleport: ${executor.port:9999}

3.启动多个微服务

此时俩个服务轮流执行任务

执行器检查到俩个结点注册成功

每个微服务轮询的去执行任务
在这里插入图片描述

2.9 路由策略(分片广播)

2.9.1 分片逻辑

执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务
,XXL-Job中的分片广播(Sharding Broadcast)路由策略允许多个任务同时执行。在分片广播策略中,一个任务可以被分成多个子任务,每个子任务被称为一个分片。这些分片可以并行执行,以提高任务的执行效率。

在这里插入图片描述

执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务

2.9.2 路由策略(分片广播)-案例

需求:让两个节点同时执行10000个任务,每个节点分别执行5000个任务

①:创建分片执行器

在这里插入图片描述

②:创建任务,路由策略为分片广播

在这里插入图片描述

③:分片广播代码

分片参数

​ index:当前分片序号(从0开始),执行器集群列表中当前执行器的序号;

​ total:总分片数,执行器集群的总机器数量;

修改yml配置

server:port: ${port:8881}xxl:job:admin:addresses: http://192.168.200.130:8888/xxl-job-adminexecutor:appname: xxl-job-sharding-executorport: ${executor.port:9999}

代码

@XxlJob("shardingJobHandler")
public void shardingJobHandler() {// 获取分片的参数int shardIndex = XxlJobHelper.getShardIndex();int shardTotal = XxlJobHelper.getShardTotal();// 获取任务数据List<Integer> list = getList();// 遍历任务数据,根据分片参数执行相应的任务项for (Integer integer : list) {if (integer % shardTotal == shardIndex) {System.out.println("当前第" + shardIndex + "分片执行了,任务项为:" + integer);}}
}// 生成任务数据列表 假设1w的任务
public List<Integer> getList() {
//这里的i表示当前任务索引List<Integer> list = new ArrayList<>();for (int i = 0; i < 10000; i++) {list.add(i);}return list;
}

因为total就俩台机器,所以任务数量索引取模就可以实现各处理5000的逻辑,当然这是轮询应该做的事情,这里演示的是其并发同时进行的特点

在这里插入图片描述在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/297954.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java数据结构与算法刷题-----LeetCode167:两数之和 II - 输入有序数组

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 思路 题目要求我们找到两个数相加的和&#xff0c;等于target指定的值。而…

reactor的原理与实现

网络模型 前情回顾服务器模型 Reactor和 ProactorReactor模型Proactor模型同步I/O模拟Poractor模型Libevent&#xff0c;libev&#xff0c;libuv优先级事件循环线程安全 前情回顾 网络IO&#xff0c;会涉及到两个系统对象&#xff1a;   一个是用户空间调用的进程或线程   …

机器学习或深度学习的数据读取工作(大数据处理)

机器学习或深度学习的数据读取工作&#xff08;大数据处理&#xff09;主要是.split和re.findall和glob.glob运用。 读取文件的路径&#xff08;为了获得文件内容&#xff09;和提取文件路径中感兴趣的东西(标签) 1&#xff0c;“glob.glob”用于读取文件路径 2&#xff0c;“.…

MQ(消息队列)相关知识

1. 什么是mq 消息队列是一种“先进先出”的数据结构 2. 应用场景 其应用场景主要包含以下3个方面 应用解耦 系统的耦合性越高&#xff0c;容错性就越低。以电商应用为例&#xff0c;用户创建订单后&#xff0c;如果耦合调用库存系统、物流系统、支付系统&#xff0c;任何…

选择排序(java)

选择排序 选择排序是默认前面都是已经排序好的&#xff0c;然后从后面 选择最小的放在前面排序好的的后面&#xff0c;首先第一轮循环的时候默认的排序好的为空&#xff0c;然后从后面选择最小的放到数组的第一个位置&#xff0c;第二轮循环的时候默认第个元素是已经 排序好的…

linux异步IO的几种方法及重点案例

异步IO的方法 在Linux下&#xff0c;有几种常见的异步I/O&#xff08;Asynchronous I/O&#xff09;机制可供选择。以下是其中一些主要的异步I/O机制&#xff1a; POSIX AIO&#xff08;Asynchronous I/O&#xff09;&#xff1a;POSIX AIO是一种标准的异步I/O机制&#xff0c…

裸机开发(1)-汇编基础

文章目录 GNU汇编语法常用汇编指令处理器内部数据传输指令存储器访问指令压栈和出栈指令跳转指令算术指令逻辑运算指令实战 函数发生调用时&#xff0c;需要进行线程保护&#xff0c;简单来说&#xff0c;就是先进行压栈操作&#xff0c;将调用函数参数、返回值等存到R0-15寄存…

Redis相关的那些事(一)

背景 目前工作所负责的工作主要是投放业务&#xff0c;属于读高并发场景&#xff0c;记录一下之前碰到的redis相关的问题。 热点大值Key&缓存击穿问题 问题表现 在某次流量峰值过程中&#xff0c;redis的CPU突然飙升&#xff0c;从监控看起来就是CPU飙升到一定程度&…

文章标题(备注)

现在也裁员了吗&#xff1f;怎么感觉越来越垃圾 这个又是什么&#xff1f;真搞笑&#xff0c;我也没开隐私呀

Linux与Bash 编程——Linux文件处理命令-L1

目录&#xff1a; linux系统与shell环境准备 Linux系统简介操作系统简史Linux的发行版&#xff1a;Linux与Windows比较&#xff1a;Linux安装安装包下载Linux的访问方式远程登录方式远程登录软件&#xff1a;mobaxterm的使用&#xff1a;使用电脑命令行连接&#xff1a;sshd的…

基于Arduino和HC-SR04的超声波测距系统设计

本文介绍了如何使用Arduino和HC-SR04超声波传感器设计并构建一个简单的超声波测距系统。我们将详细讨论硬件连线和编程步骤&#xff0c;并提供完整的Arduino代码。此系统可以应用于各种需要测量距离的项目&#xff0c;例如智能车辆、机器人和安防系统。 引言&#xff1a; 超声…

盒子 Box

UVa1587 思路&#xff1a; 1.输入每个面的长宽并将每个面较长的一边放在前面 2.判断是否存在三对面分别相等 3.判断是否存在三组四棱相等 #include <stdio.h> #include <stdlib.h> #define maxn 100int cmp(const void* e1, const void* e2) {return (int)(*(d…