智能优化算法应用:基于法医调查算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于法医调查算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于法医调查算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.法医调查算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用法医调查算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.法医调查算法

法医调查算法原理请参考:https://blog.csdn.net/u011835903/article/details/128172264
法医调查算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

法医调查算法参数如下:

%% 设定法医调查优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明法医调查算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/298017.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle 学习(1)

Oracle简介 Oracle是殷墟(yīn Xu)出土的甲骨文(oracle bone inscriptions)的英文翻译的第一个单词,在英语里是“神谕”的意思。Oracle公司成立于1977年,总部位于美国加州,是世界领先的信息管…

C++面试宝典第9题:找出第K大元素

题目 给定一个整数数组a,同时给定它的大小N和要找的K(1 <= K <= N),请根据快速排序的思路,找出数组中第K大的数(保证答案存在)。比如:数组a为[50, 23, 66, 18, 72],数组大小N为5,K为3,则第K大的数为50。 解析 这道题主要考察应聘者对于快速排序的理解,以及实…

配置手工模式链路聚合示例(交换机之间直连)

组网图形 图1 配置手工模式链路聚合组网图 手工模式链路聚合简介配置注意事项组网需求配置思路操作步骤配置文件 手工模式链路聚合简介 以太网链路聚合是指将多条以太网物理链路捆绑在一起成为一条逻辑链路&#xff0c;从而实现增加链路带宽的目的。链路聚合分为手工模式和LA…

java调用GDAL实现栅格数据的重采样的一种方法

目录 1.关于重采样 1.1概念 1.2用途 1.3常见算法 2.关于GDAL 2.1GDAL中的重采样算法 3.实现重采样 3.1思路 3.2完整代码 3.3使用QGIS验证效果 1.关于重采样 1.1概念 重采样是以原始图像的像元值或者导出的值填充到新的图像的每个像元的的过程。 1.2用途 在地理信…

顺序表的介绍与简单运用

1&#xff1a;解释与结构 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构&#xff0c;一般情况下采用数组存 储。在数组上完成数据的增删查改。 顺序表一般可分为一下几类 1.1 静态顺序表 概念&#xff1a;使用定长数组存储元素。注意&#xff1a;这种是…

YOLOv8改进 | 主干篇 | 利用SENetV2改进网络结构 (全网首发改进)

一、本文介绍 本文给大家带来的改进机制是SENetV2&#xff0c;其是2023.11月的最新机制(所以大家想要发论文的可以在上面下点功夫)&#xff0c;其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型&#xff0c;而是一个可以和现有的任何…

可靠度理论中“设计基准期”、“设计使用年限”、“使用寿命”几个概念的区分

文章目录 0. 背景1. 重现期2. 设计基准期3. 设计使用年限调整系数4. 一把杆秤5. 调整系数的补充说明Last 0. 背景 在可靠度理论中&#xff0c;经常遇见“设计基准期”、“设计使用年限”、“使用寿命”几个概念。这些概念搞不清楚对于梳理结构荷载组合而言就是致命的。本文也是…

第二十一章博客

计算机应用实现了多台计算机间的互联&#xff0c;使得它们彼此之间能够进行数据交流。网络应用程序就是在已连接的不同计算机上运行的程序&#xff0c;这些程序借助于网络协议&#xff0c;相互之间可以交换数据。编写网络应用程序前&#xff0c;首先必须明确所要使用的网络协议…

C语言中常见的笔试题(二)

题目一&#xff1a; 问题&#xff1a; 在C语言中&#xff0c;const关键字有哪些用途&#xff1f;请列举出至少三种用途&#xff0c;并给出相应的代码示例。 答案&#xff1a; 定义常量&#xff1a;使用const关键字可以定义常量&#xff0c;它们的值在程序运行期间不能被修改…

SpringMVC核心处理流程梳理

1、处理流程图展示 当我拿出这张图&#xff0c;阁下又该如何应对呢&#xff1f;执行流程是不是一目了然了。 2、DispatcherServlet&#xff1a;中央处理器或者中央调度器 下图官方的解释应该最完善了。 3、SpringMVC三大核心组件 HandlerMapping 处理器映射器&#xff0c;…

[机器人-2]:开源MIT Min cheetah机械狗设计(二):机械结构设计

目录 1、四肢朝向的选择 2、电机布局形式的选择 3、电机的选型及测试&#xff08;非常重要&#xff09; 4、结构优化 5、尺寸效应 6、其他 1、四肢朝向的选择 机械狗的结构设计&#xff0c;第一个摆在我们面前的就说四肢的朝向问题&#xff0c;如下图&#xff0c;我们是…

Spark集群部署与架构

在大数据时代&#xff0c;处理海量数据需要分布式计算框架。Apache Spark作为一种强大的大数据处理工具&#xff0c;可以在集群中高效运行&#xff0c;处理数十TB甚至PB级别的数据。本文将介绍如何构建和管理Spark集群&#xff0c;以满足大规模数据处理的需求。 Spark集群架构…