搭建一个高效的Python开发环境

“工欲善其事,必先利其器”,这里我们来搭建一套高效的 Python 开发环境,为后续的数据分析做准备。

关于高效作业,对于需要编写 Python 代码进行数据分析的工作而言,主要涉及两个方面。

1. 一款具备强大的自动完成和错误提示的开发工具

Python 丰富的函数库和组件库是这门语言强大的核心原因,但我们不可能去记忆所有的方法名和参数名,往往只能记住一些常用的或者某个方法开头的几个字母。这个时候一个好的开发工具就需要能聪明地“猜”出你想输入的代码,并给出候选列表方便你选择(类似于输入法的字词提示功能)。

另外,当你输入错误的时候,这个工具能够提示你具体是哪里错了,建议改成什么,从而大幅提升编写效率。在别人还在查到底是哪个单词拼错了导致代码跑不起来的时候,你已经写完一个完整的模块了。

2. 掌握快捷键

Python 数据分析需要边写边看结果,甚至每写两行代码就需要点击运行、新建文本段落、代码段落等操作。所以熟练地掌握快捷键,可以使绝大多数的操作都不需要鼠标,手不用离开键盘就能完成,起到事半功倍的效果。

整个配置过程相比传统的环境安装稍微多了几步,不过并不复杂,只需要跟着一步一步操作就可以。

搭建环境的版本说明如下:
Anaconda3.0

VS Code 1.51.1

实际并无太多版本限制,你安装最新版即可。

第一步、数据科学增强版的 Python 环境:Anaconda

Anaconda 是一个 Python 数据科学工具包,里面包含了 Python 做数据计算最常用的库和工具,属于必装软件。目前它已经非常成熟,并且整套 Anaconda 可以免费提供给个人使用。

1. 用浏览器访问 Anaconda 的个人版页面:https://www.anaconda.com/products/individual ,点击 Download,页面会自动跳转到具体的下载页面:

**2. 根据自己的设备类型 (Mac/Windows),选择合适的安装包版本。**无论 Windows 还是 Mac, 都选择 Graphical Installer,它代表图形化的安装器,之后更易于使用。

3. 下载之后双击安装包进行安装(如图所示),直接点击 Next。


4. 接下来就是使用协议界面,点击 I Agree,代表同意使用协议。


5. 之后连续 Next,可以看到选择安装位置的界面,如果没有特殊的需求,直接默认位置就好,继续点击 Next。

6. 最后一个配置界面是高级选项,不用更改,直接点击 Install,等待 2~3 分钟之后,即可完成安装。

安装完毕之后,可以从程序中找到 Anaconda Navigator,点击打开就可以看到整套 Anaconda3 的所有工具(如下图所示):

其中 Notebook 是数据分析应用范围最广泛的工具,但它却不是一款足够有效率的工具,因为它缺乏智能的代码输入联想、自动完成和错误提示。而有效率的分析师是不会容忍自己用“记事本”写代码的。

所以,接下来,我们可以在自己的电脑中配置一个智能、强大的 Notebook(此时安装好的 Anaconda3 页面先不关闭)。

第二步,飞一般的代码编辑器:VS Code

VS Code( Visual Studio Code),是微软开发的跨平台代码编辑器,靠着其强大的插件生态,目前已经成为全球最流行的代码编辑器。本次我们就通过 VS Code,来解决 Notebook 开发效率的问题。

首先按照以下的步骤安装和配置 VS Code。

**1. 下载:**用浏览器访问https://code.visualstudio.com/,网页会直接识别当前的操作系统,直接点击下载按钮,下载安装包。

**2. 安装:**下载完毕后,双击安装包进行安装,全部默认配置即可。

3. 安装中文语言包【可选,习惯英文的同学可以跳过】:启动 VS Code,进入插件 Tab(左侧边栏最后下方的图标),输入 【Chinese】,出现的第一个插件,点击 Install 安装。安装完成后,重启 VS Code 即可生效。

4. 安装 Python 插件:依旧是在插件面板,输入 【Python】,安装列表中的第一个插件。


至此,基础的 VS Code 环境已经配置完毕。

第三步,配置 VS Code 使用 Anaconda 的 Python 环境

打开 VS Code,选择【文件】-【新建文件】,会建立一个默认的文本文件,按 CTRL +s 保存,文件名为【hello.py】。

后缀名一定要是 .py,因为 VS Code 要根据文件的后缀名来匹配合适的工具链。

保存之后,如果 VS Code 识别到 Python 文件,我们上一步安装的 Python 插件就会开始工作,寻找本机的 Python 环境,结果会展示在下方的状态栏上。

Anaconda 的 Python 环境包含了丰富的科学计算的库,所以是做数据分析的首选。

确认环境之后,我们即可进入最后一步。

第四步,Jupyter in VS Code

我们进入 VS Code 的插件 Tab(左侧边栏最下方的图标),输入 Jupyter 安装由微软官方出品的 Jupyter 插件(前几个有 Microsoft 字眼的)。

安装完成之后,重启 VS Code(如果显示是禁用,那就是安装好了,直接操作后续即可)。按 【CTRL+P】 弹出命令面板,输入【>Jupyter】,此时会列出所有 Jupyter 插件支持的操作,选择 【Jupyter: Create New Blank Jupyter Notebook】,如下图所示。


选择之后,VS Code 内部就出现了一个类似 Notebook 的编辑界面,和传统的网页版 Notebook 不同,VS Code 中的 Notebook 具备强大的代码提示和自动完成的功能。接下来,我们来学习一下它的主要操作。

打开编辑界面,我们将 Notebook 可操作性的区域分为三个部分:主操作区、Cell 操作区、 边栏操作区。

主操作区:主要用来控制整个 Notebook 的一些行为.(大家可以把鼠标放在图标上看一下各个按钮对应的功能)。

边栏操作区:不同位置的“+”号代表在不同位置插入 Cell。

Cell 操作区:主要用来控制当前 Cell 的行为。

Cell 是 Notebook 中的核心概念,直译过来是“单元格”,但 Notebook 中的 Cell 却不能用单元格简单概括,所以本文统一用 Cell 描述,一个 Notebook 由多个 Cell 组成。
Cell 一共有两种类型:

代码 Cell,主要用来编写 Python 代码,每个代码 Cell 都可以单独执行,并且执行结果会展示在 Cell 的下方。

文本 Cell,顾名思义,用来编写文本, 对于数据分析工作而言,除了代码本身,分析的思路、推导的逻辑同样非常重要,文本 Cell 就是用来承载这些内容。

这也是 Notebook 区别于 IPython 最大的地方,可以实现代码和文本的混排,来最大化的呈现数据分析的产出。

Notebook 的基本操作

接下来,我们通过一个具体的目的,学习一下 Notebook 的基本操作。这些操作在后续的博文中会经常用到,我们先通过几个简单的小案例初步熟悉一下。

1、创建一个 Notebook,保存为 my_practice.ipynb。

2、添加一个 Cell,通过代码打印“this is my first Notebook”, 并运行。 在之后的案例中,我们每介绍一个小阶段,都会通过新建一个 Cell 来编写代码测试我们实验的内容。

3、添加一个 Cell,并转换成文本 Cell,输入文字“我的数据分析启程了!”。

4、添加一个 Cell,通过代码打印 1+1 的结果。

下面我们开始完成上面的案例:

第一步,按【CTRL + P】(Mac 对应【CMD + P】), 调出 VS Code 的命令面板,输入【> Jupyter】可以看到 Notebook 插件支持的命令,其中比较常用的几个如下。

  1. Create New Black Jupyter Notebook: 创建新的空白 Notebook 工作区。
  2. Export to PDF:将当前的 Notebook 导出为 PDF,在后续写数据分析报告的时候会用到。
  3. Import Jupyter Notebook:导入已有的 Notebook。用来导入已有的 Notebook 文件。


首先选择第一个,创建一个新的 Notebook,创建之后按 【CTRL + S】 保存,文件名输入:first.ipynb。

第二步,新建 Cell,我们点击边栏操作区的 + 号即可新建 Cell, 然后我们输入以下代码:


第三步,我们类似第二步首先新建一个 Cell,并点击 Cell 操作区中的 M 图标,切换为文本模式,并输入“我的数据分析启程了!”。输入完毕后鼠标点击 Cell 之外的任意区域即可退出编辑模式,进入预览模式(双击 Cell 可重新进入编辑模式)。这样,我们的第三步就完成了。 如图所示。


第四步,就很简单了,我们直接新建一个 Cell, 并输入以下代码:

print(1+1)

运行 Cell,可以看到打印了“2”,至此,我们的任务已经全部完成。整个过程如图所示。

至此,你已经在自己电脑上配置出一套面向数据分析的 Python 开发环境,也知道如何新建 Notebook,以及在 Notebook 中添加代码 Cell 来输入代码、文本 Cell 来输入文字。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/298241.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity-Shader-渲染队列,ZTest,ZWrite

Unity-Shader-渲染队列,ZTest,ZWrite ZTest(深度测试)和ZWrite(深度写入)ZTest Less(深度小于当前缓存则通过)ZTest Greater(深度大于当前缓存则通过)ZTest L…

Linux--Shell脚本应用实战

实验环境 随着业务的不断发展,某公司所使用的Linux服务器也越来越多。在系统管理和维护过程中,经 常需要编写一些实用的小脚本,以辅助运维工作,提高工作效率。 需求描述 > 编写一个名为getarp.sh的小脚本,记录局域…

宝塔面板Linux服务器CentOS 7数据库mysql5.6升级至5.7版本教程

近段时间很多会员问系统更新较慢,也打算上几个好的系统,但几个系统系统只支持MYSQL5.7版本,服务器一直使用较低的MYSQL5.6版本,为了测试几个最新的系统打算让5.6和5.7并存使用,参考了多个文档感觉这种并存问题会很多。…

第十一节TypeScript Array(数组)

1、描述 数组对象是使用单独的变量名来存储一系列的值。 比如,你现在有一组数据,存单独变量如下: var data1"Android"; var data2"Java"; var data3"Harmony"; 那如果有10、100个这种变量呢,那…

指法练习软件TT

1、说明 这个是90年代后期读书时写的C语言练习软件,模仿当时的打字练习软件。 在技能上使用屏幕直接输出,支持彩色,能够在DOS和Windows98的窗口下运行。 2、主要界面 支持多用户档案,以键盘操作。 进入具体用户档案后&#xff0c…

路由器介绍和命令操作

先来回顾一下上次的内容: ip地址就是由32位二进制数组 二进位数就是只有数字0和1组成 网络位:类似于区号,表示区域作用 主机位:类似于号码,表示区域中编号 网络名称:网络位不变,主机位全为0 …

java IO

主要内容 java.io.File类的使用 IO原理及流的分类 文件流 FileInputStream / FileOutputStream / FileReader / FileWriter 缓冲流 BufferedInputStream / BufferedOutputStream / BufferedReader / BufferedWriter 转换流 InputStreamReader / OutputStreamWriter 标准…

树莓派,opencv,Picamera2利用舵机云台追踪人脸(PID控制)

一、需要准备的硬件 Raspiberry Pi 4b两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)二自由度舵机云台(如下图)Raspiberry CSI 摄像头 组装后的效果: 二、项目目…

MP3音乐播放器搜索引擎-窗口实现

在Headers里面添加新文件 想在mainwindow里面通过点击按钮出现这个新的对话框我们应该将新的对话框的头文件添加到mainwindow.h 然后我们可以创建一个AboutADialog对象,模态对话框就是只能对模态对话框进行操作点不了主窗口,非模态对话框则可以&#xff…

tensorboard可视化——No dashboards are active for the current data set.

No dashboards are active for the current data set. 出现问题的原因是事件的路径未用绝对路径,tensorboard --logdir./runs --port6007 改为tensorboard --logdirD:\Code\Python\Study\CL\hat-master\hat-master\run s\one --port6007就好了

论文阅读:Blind Super-Resolution Kernel Estimation using an Internal-GAN

这是发表在 2019 年 NIPS 上的一篇文章,那个时候还叫 NIPS,现在已经改名为 NeurIPS 了。文章中的其中一个作者 Michal Irani 是以色 Weizmann Institute of Science (魏茨曼科学研究学院) 的一名教授,对图像纹理的内在统计规律有着很深入的研…

yolo实现数据增强(数据集不够,快速增加数据集)

目录结构 附上数据增强的全部代码 # -*- codingutf-8 -*-import time import random import copy import cv2 import os import math import numpy as np from skimage.util import random_noise from lxml import etree, objectify import xml.etree.ElementTree as ET imp…