【强化学习】PPO:近端策略优化算法

近端策略优化算法
《Proximal Policy Optimization Algorithms》

论文地址:https://arxiv.org/pdf/1707.06347.pdf

一、 置信域方法(Trust Region Methods)

​ 设 π θ o l d \pi_{\theta_{old}} πθold是先前参数为 θ o l d \theta_{old} θold的策略网络, π θ \pi_{\theta} πθ则是当前待优化的策略网络,则TRPO的优化目标是:
maximize θ E ^ t [ π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) A ^ t ] subject to E ^ t [ KL [ π θ o l d ( ⋅ ∣ s t ) , π θ ( ⋅ ∣ s t ) ] ] ≤ δ \begin{align} &\mathop{\text{maximize}}_{\theta}\quad\hat{\mathbb{E}}_t\Big[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}\hat{A}_t \Big] \\ &\mathop{\text{subject}\;\text{to}}\quad\hat{\mathbb{E}}_t[\text{KL}[\pi_{\theta_{old}}(\cdot|s_t),\pi_{\theta}(\cdot|s_t)]]\leq\delta \end{align} maximizeθE^t[πθold(atst)πθ(atst)A^t]subjecttoE^t[KL[πθold(st),πθ(st)]]δ
其中, A ^ t \hat{A}_t A^t t t t时刻的优势函数估计值。 r t ( θ ) = π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) r_t(\theta)=\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} rt(θ)=πθold(atst)πθ(atst)是用来控制新旧策略的差异,若差异到则会增加更新幅度,反之则降低更新幅度。约束条件则是新旧策略函数的KL散度,该约束会控制新旧策略的差距不会太大。但是,求解这个带约束的优化问题实现复杂且计算量大。

​ 理论上证明TRPO在实践中,建议使用惩罚项而不是约束,即转换为无约束优化问题。
maximize θ E ^ t [ π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) A ^ t − β KL [ π θ o l d ( ⋅ ∣ s t ) , π θ ( ⋅ ∣ s t ) ] ] \mathop{\text{maximize}}_{\theta}\quad\hat{\mathbb{E}}_t\Big[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}\hat{A}_t-\beta\text{KL}[\pi_{\theta_{old}}(\cdot|s_t),\pi_{\theta}(\cdot|s_t)]\Big] maximizeθE^t[πθold(atst)πθ(atst)A^tβKL[πθold(st),πθ(st)]]
其中, β \beta β是超参数。TRPO使用硬约束而不是惩罚项,是因为很难选择单个 β \beta β在所有不同问题上均表现良好。实验也表明,简单选择固定的惩罚系数 β \beta β并用SGD优化惩罚目标是不够的,需要额外的修改。

二、Clipped Surrogate Objective

​ 由于 r t ( θ ) = π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) r_t(\theta)=\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} rt(θ)=πθold(atst)πθ(atst),显然 r t ( θ o l d ) = 1 r_t(\theta_{old})=1 rt(θold)=1。TRPO最大化”代理“目标函数:
L CPI ( θ ) = E ^ t [ π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) A ^ t ] = E ^ t [ r t ( θ ) A ^ t ] L^{\text{CPI}}(\theta)=\hat{\mathbb{E}}_t\Big[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}\hat{A}_t\Big]=\hat{\mathbb{E}}_t[r_t(\theta)\hat{A}_t] LCPI(θ)=E^t[πθold(atst)πθ(atst)A^t]=E^t[rt(θ)A^t]
在没有约束的情况下,最大化 L CPI L^{\text{CPI}} LCPI有可能会大幅度更新策略;因此,需要修改目标函数来惩罚 r t ( θ ) r_t(\theta) rt(θ)远离1。

​ 因此提出目标函数
L CLIP ( θ ) = E ^ t [ min ⁡ ( r t ( θ ) A ^ t , clip ( r t ( θ ) , 1 − ϵ , 1 + ϵ ) A ^ t ] L^{\text{CLIP}}(\theta)=\hat{\mathbb{E}}_t\Big[\min(r_t(\theta)\hat{A}_t,\text{clip}(r_t(\theta),1-\epsilon,1+\epsilon)\hat{A}_t\Big] LCLIP(θ)=E^t[min(rt(θ)A^t,clip(rt(θ),1ϵ,1+ϵ)A^t]
ϵ \epsilon ϵ截断超参数,通常设置为0.2。 clip() \text{clip()} clip()代表截断函数,负责将 r t r_t rt限制在 [ 1 − ϵ , 1 + ϵ ] [1-\epsilon,1+\epsilon] [1ϵ,1+ϵ],以保证收敛性。最后,使用无截断和截断目标函数的最小值,从而形成未截断目标函数的下界。

​ 优势函数A可以分为正负两种情况。若优势函数为正,当 r t > 1 + ϵ r_t>1+\epsilon rt>1+ϵ时,将不提供额外的奖励;若优势函数为负,当 r t < 1 − ϵ r_t<1-\epsilon rt<1ϵ时,同样不提供额外的奖励,这样就能限制新旧策略的差异。
在这里插入图片描述

三、自适应KL惩罚系数

​ 另一种代替或者补充clipped surrogate objective的方案是使用KL散度惩罚,并调整惩罚系数,每次策略更新时使得KL散度 d targ d_{\text{targ}} dtarg达到某个目标值。在作者的实验中,KL惩罚的表现要差于clipped surrogate objective,但其可以作为重要的baseline。

​ 在每次策略更新中执行下面的步骤:

  • 利用若干个minibatch SGD的epochs,优化KL惩罚目标
    L KLPEN ( θ ) = E ^ t [ π θ ( a t ∣ s t ) π θ o l d ( a t ∣ s t ) A ^ t − β KL [ π θ o l d ( ⋅ ∣ s t ) , π θ ( ⋅ ∣ s t ) ] ] L^{\text{KLPEN}}(\theta)=\hat{\mathbb{E}}_t\Big[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}\hat{A}_t-\beta\text{KL}[\pi_{\theta_{old}}(\cdot|s_t),\pi_{\theta}(\cdot|s_t)]\Big] LKLPEN(θ)=E^t[πθold(atst)πθ(atst)A^tβKL[πθold(st),πθ(st)]]

  • 计算 d = E ^ t [ KL [ π θ o l d ( ⋅ ∣ s t ) , π θ ( ⋅ ∣ s t ) ] ] d=\hat{\mathbb{E}}_t[\text{KL}[\pi_{\theta_{old}}(\cdot|s_t),\pi_{\theta}(\cdot|s_t)]] d=E^t[KL[πθold(st),πθ(st)]]

    d < d targ / 1.5 , β ← β / 2 d<d_{\text{targ}}/1.5,\beta\leftarrow\beta/2 d<dtarg/1.5,ββ/2

    d > d targ × 1.5 , β ← β × 2 d>d_{\text{targ}}\times1.5,\beta\leftarrow\beta\times 2 d>dtarg×1.5,ββ×2

​ 更新后的 β \beta β用于下一次的策略更新。

四、完整算法

在这里插入图片描述

​ 前面推导的surrogate损失函数能够在典型的策略梯度上简单改动即可实现。大多数的优势函数都使用一个可学习的状态价值函数 V ( s ) V(s) V(s)。若策略网络和价值网络共享神经网络架构,那么需要使用一个结合了策略函数和值函数误差项的损失函数。目标函数可以进一步添加熵正则来确保充分的探索。合并这些项,就能够获得下面的目标函数:
L CLIP+VF+S ( θ ) = E ^ t [ L t CLIP ( θ ) − c 1 L t VF ( θ ) + c 2 S [ π θ ] ( s t ) ] L^{\text{CLIP+VF+S}}(\theta)=\hat{\mathbb{E}}_t[L_t^{\text{CLIP}}(\theta)-c_1L_t^{\text{VF}}(\theta)+c_2S[\pi_{\theta}](s_t)] LCLIP+VF+S(θ)=E^t[LtCLIP(θ)c1LtVF(θ)+c2S[πθ](st)]
其中, c 1 c_1 c1 c 2 c_2 c2是控制各个项比例的超参数, S S S是熵正则项, L t SF L^{\text{SF}}_t LtSF是均方误差损失 ( V θ ( s t ) − V t targ ) 2 (V_{\theta}(s_t)-V_t^{\text{targ}})^2 (Vθ(st)Vttarg)2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/298411.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

运筹视角下,体系化学习机器学习算法原理的实践和总结

文章目录 引言目标设计目标实践文章汇总经验总结一则预告 引言 上两周总结了我在体系化学习运筹学基础知识方面的个人经验&#xff0c;看过那篇文章的人可能知道&#xff0c;今年我还花了很多时间学习机器学习中各种模型的算法原理。 在工业应用中&#xff0c;机器学习和运筹…

毫米波RIS研究测试方案:一站式助力工程师探索高频通信未来

方案介绍 在当前科技高速发展的时代&#xff0c;毫米波通信技术因其高数据传输速率和大容量的潜力而备受瞩目。其中&#xff0c;可重构智能表面&#xff08;RIS&#xff09;作为一项创新技术&#xff0c;正在为毫米波通信系统的设计和优化带来新的可能性。为了应对这一领域的研…

静态HTTP的优势:速度、安全性和可扩展性,一个都不能少!

大家好&#xff0c;今天我们来聊聊静态HTTP的优势。有人可能会说&#xff1a;“静态HTTP&#xff0c;不就是那些不会动的网页吗&#xff1f;”错&#xff01;静态HTTP可不仅仅是静止不动的&#xff0c;它可是让网站速度飞快、安全稳定、扩展性强的神器&#xff01;不信&#xf…

【办公技巧】ppt如何加密只能看不能修改?

大家是否想要给PPT文件设置加密&#xff0c;让ppt文件变为只能查看不能修改的状态&#xff1f;今天给大家分享给PPT文件设置带有密码的只读模式&#xff08;修改权限&#xff09;。 方法如下&#xff1a; PPT文件之后&#xff0c;将PPT文件进行另存为操作&#xff0c;但是在选…

“C语言“——scanf()、getchar() 、putchar()、之间的关系

scanf函数说明 scanf函数是对来自于标准输入流的输入数据作格式转换&#xff0c;并将转换结果保存至format后面的实参所指向的对象。 而const char*format 指向的字符串为格式控制字符串&#xff0c;它指定了可输入的字符串以及赋值时转换方法。 简单来说给一个打印格式(输入…

自己动手做 chatgpt:seq2seq翻译模型中GRU模块的原理和数据预处理

chatgpt 是典型的 NLP 类型应用。也就是它主要于语言的处理和输出。因此它的模型设计必然借鉴了深度学习早期在语言翻译方面的算法设计。因此理解 chatgpt 我们就需要理解深度学习算法是如何处理自然语言翻译这个问题&#xff0c;就像学习微积分时&#xff0c;我们需要提前掌握…

(Matlab)基于CNN-LSTM的多维回归预测(卷积神经网络-长短期记忆网络)

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、代码实际运行效果&#xff1a; 三、部分代码展示&#xff1a; 四、本文完整代码数据分享&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于…

电脑开机快捷启动,启动菜单没有u盘怎么办

电脑开机快捷启动键找不到u盘怎么办 对于快捷启动键找不到u盘的问题&#xff0c;小编很了解其中的门道&#xff0c;因为开机找不到u盘是我们使用电脑时候的常见问题。那么我们到底要如何解决开机找不到u盘的问题呢?其实方法还是蛮简单的&#xff0c;下面小编就来教大家电脑开…

CentOS环境下Nacos2.3集成PostgreSQL

title: CentOS环境下Nacos2.3集成PostgreSQL date: 2023-12-21 19:15:00 categories: Nacos description: CentOS环境下Nacos2.3集成PostgreSQL 1. 目录 1. 目录2. 简介3. 安装部署 3.1. 部署模式3.2. 环境准备3.3. 下载安装文件3.4. PostgreSQL插件 3.4.1. 下载地址3.4.2. 结…

Podman配置mongodb

文章目录 查询镜像拉取镜像查看镜像运行容器创建root用户 查询镜像 podman search mongo拉取镜像 podman pull docker.io/library/mongo查看镜像 podman images运行容器 podman run -d -p 27017:27017 --namemongodb-test docker.io/library/mongo创建root用户 podman exe…

太牛叉了!国产 AI 智能体惊艳问世,全面致敬 FastGPT!

太震撼了&#xff01;太厉害了&#xff01;昆仑万维正式发布了「天工 SkyAgents」平台&#xff0c;助力大模型走入千家万户。你听听&#xff0c;这个名字一听就有一种巧夺天工的感觉&#xff0c;技艺那是相当的高超。 这个平台基于昆仑万维「天工大模型」打造&#xff0c;具备…

[Angular] 笔记 8:list/detail 页面以及@Input

1. list 页面 list/detail 是重要的 UI 设计模式。 vscode terminal 运行如下命令生成 detail 组件&#xff1a; PS D:\Angular\my-app> ng generate component pokemon-base/pokemon-detail --modulepokemon-base/pokemon-base.module.ts CREATE src/app/pokemon-base/p…