041、基于CNN的样式迁移

之——基于CNN的滤镜

目录

之——基于CNN的滤镜

杂谈

正文

1.基于CNN的样式迁移

2.实现


杂谈

        通过CNN的特征提取,可以实现将一个图片的样式模式特征迁移到另一张图像上。


正文

1.基于CNN的样式迁移

         就是在某些层的输出上用其他的图片进行监督。

        


2.实现

        一般来说,越靠近输入层,越容易抽取图像的细节信息;反之,则越容易抽取图像的全局信息。 

        为了避免合成图像过多保留内容图像的细节,我们选择VGG较靠近输出的层,即内容层,来输出图像的内容特征。 我们还从VGG中选择不同层的输出来匹配局部和全局的风格,这些图层也称为风格层

        整个过程中唯一要更新的,是输入的图像,经过几个loss的反向传播,并使得最终的噪声较小。

        细节见教材。重点关注一下多头的损失、以及全变分损失。

        有时候,我们学到的合成图像里面有大量高频噪点,即有特别亮或者特别暗的颗粒像素。 一种常见的去噪方法是全变分去噪。

        全变分损失定义为:

        

        尽可能降低该损失,就可以使得相邻噪声较小。

        最终风格转移的损失函数是内容损失、风格损失和总变化损失的加权和。 通过调节这些权重超参数,我们可以权衡合成图像在保留内容、迁移风格以及去噪三方面的相对重要性。


        基于卷积神经网络(CNN)的样式迁移是一种图像处理技术,旨在将一幅图像的内容(内容图像)与另一幅图像的风格(样式图像)结合在一起,生成一个新的图像,该图像既保留了内容图像的内容,又具有样式图像的艺术风格。

下面是基于CNN的样式迁移的主要思想和步骤:

  1. 网络架构: 典型的基于CNN的样式迁移方法使用预训练的深度神经网络,通常是VGG网络。VGG网络具有深度的卷积层,能够捕捉图像的不同层次的特征。

  2. 损失函数: 样式迁移的关键在于定义损失函数,它包括内容损失和样式损失。内容损失衡量生成图像与内容图像的相似度,而样式损失则衡量生成图像与样式图像的相似度。

    • 内容损失(Content Loss): 通过比较生成图像和内容图像在某些层次的特征表示,确保生成图像保留了内容图像的关键特征。

    • 样式损失(Style Loss): 通过比较生成图像和样式图像在不同层次的特征表示,确保生成图像的统计特性与样式图像相似。

  3. 优化过程: 目标是最小化总体损失函数,使生成图像同时匹配内容和样式。通常使用梯度下降或其变体来调整生成图像的像素值,以降低损失函数。

  4. 图像生成: 通过迭代优化过程,生成一个新的图像,该图像在内容上与内容图像相似,在样式上与样式图像相似。

  5. 超参数调整: 样式迁移中有一些超参数需要调整,如内容损失和样式损失的权重,学习率等。这些超参数的选择会影响最终生成图像的质量和风格。

        基于CNN的样式迁移方法在图像生成和艺术风格转换方面取得了很大的成功,它被广泛用于图像编辑、电影特效和艺术创作等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/298676.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在别人发来的文章上修改时,出现红色且带下划线的情况

这是因为一些比较严谨的机构将模板发过来在你修改的时候会出现特殊标记(比如律师行业) 这里想要直接在他的文档上进行修改,需要取消掉原来的修订配置 再次输入格式消失

2023_Spark_实验三十三:配置Standalone模式Spark3.4.2集群

实验目的:掌握Spark Standalone部署模式 实验方法:基于centos7部署Spark standalone模式集群 实验步骤: 一、下载spark软件 下载的时候下载与自己idea里对应版本的spark News | Apache Spark 选择任意一个下载即可 - spark 3.4.1 - spark …

Elasticsearch的分片平衡问题解决

2023年11月份在某电商系统生产中的Elasticsearch(以下简称ES)集群突然,出现了大量慢查询告警,导致请求堆积。经过几天的排查发现了ES节点主分片和副本分片分布存在不均匀的问题。当然了暂未有定论是由于分片不均衡导致了性能下降&…

Mybatis缓存机制详解与实例分析

前言: 本篇文章主要讲解Mybatis缓存机制的知识。该专栏比较适合刚入坑Java的小白以及准备秋招的大佬阅读。 如果文章有什么需要改进的地方欢迎大佬提出,对大佬有帮助希望可以支持下哦~ 小威在此先感谢各位小伙伴儿了😁 以下正文开始 Mybat…

Jenkins安装与设置(插件安装失败,版本问题解决)

早期的使用docker安装jenkins的方法会出现插件无法安装的问题,是由于docker拉取的jenkins版本太低了 jdk安装 Linux系统安装JDK1.8 详细流程 maven安装: centos7下安装Maven 使用docker进行安装jenkins: 先把镜像和容器卸干净 docker ps -a…

AIKit v4.11.0 – WordPress AI 自动编写器、聊天机器人、写作助手和内容重定向器 / OpenAI GPT 插件

AIKit v4.11.0:WordPress的AI革命 一、引言 AIKit v4.11.0是一款为WordPress用户精心设计的强大插件,该插件集成了OpenAI的GPT-3技术,为用户提供了前所未有的AI写作和聊天机器人功能。此版本的推出,将WordPress的功能扩展到了全新…

智能安全配电装置在临时展会场所中的应用

贾丽丽 安科瑞电气股份有限公司 上海嘉定 201801 【摘要】简述了商场临时展会、展摊等场所中电气装置用电的特性,针对此类场所中隐含的电气安全隐患问题,结合智能安全配电装置的功能,从用电设备的接地、线路的安装与敷设、设备的维护和管理…

ios开发及上架

iOS证书的分类: 开发者证书(Development Certificate):用于在开发阶段对应用程序进行签名和验证。开发者证书只能在开发者模式下使用,无法发布到App Store。 发布证书(Distribution Certificate&#xff…

Linux free命令使用教程(free指令)(查看内存、系统内存、内存占用、内存使用情况)

文章目录 Linux free命令使用教程1. free命令简介2. free命令选项2.1 显示单位(free -b、free -k、free -m、free -g)2.2 使用人类可读的格式(free -h)2.3 显示总计数(free -t)2.4 连续监视内存使用 3. 解析…

【AI】使用阿里云免费服务器搭建Langchain-Chatchat本地知识库

书接上文,由于家境贫寒的原因,导致我本地的GPU资源无法满足搭建Langchain-Chatchat本地知识库的需求,具体可以看一下这篇文章,于是我只能另辟蹊径,考虑一下能不能白嫖一下云服务器资源,于是去找网上找&…

【C++】并发:异步操作

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍并发:异步操作。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下次更新不…

MySQL定时备份实现

一、备份数据库 –all-databases 备份所有数据库 /opt/mysqlcopy/all_$(date “%Y-%m-%d %H:%M:%S”).sql 备份地址 docker exec -it 容器名称 sh -c "mysqldump -u root -ppassword --all-databases > /opt/mysqlcopy/all_$(date "%Y-%m-%d %H:%M:%S").sq…