【MYSQL】MYSQL 的学习教程(七)之 慢 SQL 优化思

1. 慢 SQL 优化思路

  1. 慢查询日志记录慢 SQL
  2. explain 分析 SQL 的执行计划
  3. profile 分析执行耗时
  4. Optimizer Trace 分析详情
  5. 确定问题并采用相应的措施

1. 慢查询日志记录慢 SQL

如何定位慢SQL呢?

我们可以通过 慢查询日志 来查看慢 SQL。

①:开启慢查询日志:

  • SET global slow_query_log = ON;:设置慢查询开启的状态(ON:开启;OFF:关闭)
  • slow_query_log_file:设置慢查询日志存放的位置
  • SET global log_queries_not_using_indexes = ON;:记录没有使用索引的查询 SQL。前提是slow_query_log 的值为 ON,否则不会奏效
  • SET long_query_time = 10;:设置慢查询的阀值,单位秒。如果SQL执行时间超过阀值,就属于慢查询 记录到日志文件中

②:查看慢查询日志配置:

  • show variables like 'slow_query_log%
  • show variables like 'long_query_time'

③:慢查询日志分析工具:

mysqldumpslow:该工具是慢查询自带的分析慢查询工具,一般只要安装了mysql,就会有该工具

# 取出使用最多的10条慢查询
mysqldumpslow -s c -t 10 /var/run/mysqld/mysqld-slow.log 
# 取出查询时间最慢的3条慢查询
mysqldumpslow -s t -t 3 /var/run/mysqld/mysqld-slow.log 
# 得到按照时间排序的前10条里面含有左连接的查询语句
mysqldumpslow -s t -t 10 -g “left join” /database/mysql/slow-log 
# 按照扫描行数最多的
mysqldumpslow -s r -t 10 -g 'left join' /var/run/mysqld/mysqld-slow.log 

注意: 使用 mysqldumpslow 的分析结果不会显示具体完整的sql语句,只会显示sql的组成结构;

假如: SELECT * FROM sms_send WHERE service_id=10 GROUP BY content LIMIT 0, 1000;

Count: 1 Time=1.91s (1s) Lock=0.00s (0s) Rows=1000.0 (1000), vgos_dba[vgos_dba]@[10.130.229.196]
SELECT * FROM sms_send WHERE service_id=N GROUP BY content LIMIT N, N;

工具其实还有很多,并不限制只有这一种,还有 pt-query-digestmysqlsla 等,这些都是可以定位慢查询日志的小工具

慢查询原因:

  • 全表扫描:explain分析type属性all
  • 全索引扫描:explain分析type属性index
  • 索引过滤性不好:靠索引字段选型、数据量和状态、表设计
  • 频繁的回表查询开销:尽量少用select *,使用覆盖索引

<转>详解 慢查询 之 mysqldumpslow

2. explain 查看分析 SQL 的执行计划

当定位出查询效率低的 SQL 后,可以使用 explain 查看 SQL 的执行计划。

当 explain 与 SQL 一起使用时,MySQL 将显示来自优化器的有关语句执行计划的信息。即:MySQL 解释了它将如何处理该语句,包括有关如何连接表以及以何种顺序连接表等信息:

在这里插入图片描述
一般来说,我们需要重点关注 type、key、rows、extra

13.1 type

type 表示连接类型,查看索引执行情况的一个重要指标。以下性能从好到坏依次:system > const > eq_ref > ref > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

  • NULL:表示不用访问表,速度最快
  • system:这种类型要求数据库表中只有一条数据,是 const 类型的一个特例,一般情况下是不会出现的
  • const:通过一次索引就能找到数据,一般用于主键或唯一索引作为条件,这类扫描效率极高,速度非常快
  • eq_ref:常用于主键或唯一索引扫描,一般指使用主键的关联查询
  • ref : 常用于非主键和唯一索引扫描
  • ref_or_null:这种连接类型类似于 ref,区别在于 MySQL 会额外搜索包含 NULL 值的行
  • index_merge:使用了索引合并优化方法,查询使用了两个以上的索引
  • unique_subquery:类似于 eq_ref,条件用了 in 子查询
  • index_subquery:区别于 unique_subquery,用于非唯一索引,可以返回重复值
  • range:常用于范围查询,比如:between … and 或 In 等操作
  • index:全索引扫描
  • all:全表扫描

13.2 possible_keys

表示查询时能够使用到的索引(显示的是索引名称),只是可能用到的索引,而不是实际上用到的索引

13.3 key

该列表示实际用到的索引。一般配合 possible_keys 列一起看

13.4 rows

MySQL查询优化器会根据统计信息,估算 SQL 要查询到结果需要扫描多少行记录。原则上 rows 是越少效率越高,可以直观的了解到SQL效率高低

13.5 extra

该字段包含有关 MySQL 如何解析查询的其他信息,它一般会出现这几个值:

  • Using filesort:表示按文件排序,一般是在指定的排序和索引排序不一致的情况才会出现。一般见于 order by 语句。建议优化
  • Using temporary: 表示使用了临时表,性能特别差,需要重点优化。一般多见于 group by 语句,或者 union 语句
  • Using index :表示用了覆盖索引
  • Using where : 表示使用了 where 条件过滤,需要通过索引回表查询数据
  • Using index condition:MySQL5.6 之后新增的索引下推。在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据
  • NULL:查询的列未被索引覆盖

总结:

extrawhere 条件select 的字段
nullwhere 筛选条件是索引的前导列查询的列未被索引覆盖
Using indexwhere 筛选条件是索引的前导列查询的列被索引覆盖
Using where; Using indexwhere 筛选条件是索引列之一但不是前导列或者where筛选条件是索引列前导列的一个范围查询的列被索引覆盖
Using where;where 筛选条件不是索引列-
Using where;where 筛选条件不是索引前导列、是索引列前导列的一个范围(>)查询列未被索引覆盖
Using index conditionwhere 索引列前导列的一个范围(<、between)查询列未被索引覆盖

两种排序的情况:

extra出现场景
Using filesortfilesort主要用于查询数据结果集的排序操作,首先MySQL会使用sort_buffer_size大小的内存进行排序,如果结果集超过了sort_buffer_size大小,会把这一个排序后的chunk转移到file上,最后使用多路归并排序完成所有数据的排序操作。
Using temporaryMySQL使用临时表保存临时的结构,以用于后续的处理,MySQL首先创建heap引擎的临时表,如果临时的数据过多,超过max_heap_table_size的大小,会自动把临时表转换成MyISAM引擎的表来使用。

filesort 只能应用在单个表上,如果有多个表的数据需要排序,那么MySQL会先使用using temporary保存临时数据,然后再在临时表上使用filesort进行排序,最后输出结果

13.6 select_type

select_type:表示查询的类型。

常用的值如下:

  • SIMPLE : 表示查询语句不包含子查询或 UNION
  • PRIMARY:表示此查询是最外层的查询
  • UNION:表示此查询是 UNION 的第二个或后续的查询
  • DEPENDENT UNION:UNION 中的第二个或后续的查询语句,使用了外面查询结果
  • UNION RESULT:UNION 的结果
  • SUBQUERY:SELECT 子查询语句
  • DEPENDENT SUBQUERY:SELECT子查询语句依赖外层查询的结果

最常见的查询类型是 SIMPLE,表示我们的查询没有子查询也没用到 UNION 查询

13.7 filtered

该列是一个百分比的值,通过查询条件最终查询记录行数和通过 type 字段扫描记录行数的百分比。简单点说,这个字段表示存储引擎返回的数据在经过过滤后,剩下满足条件的记录数量的比例

13.8 key_len

表示查询使用了索引的字节数量(可以判断是否全部使用了组合索引)

key_len的计算规则如下:

  1. 字符串类型:字符串长度跟字符集有关:latin1 = 1、gbk = 2、utf8 = 3、utf8mb4 = 4
    • char(n):n * 字符集长度
    • varchar(n):n * 字符集长度 + 2字节
  2. 数值类型
    • TINYINT:1个字节
    • SMALLINT:2个字节
    • MEDIUMINT:3个字节
    • INTFLOAT:4个字节
    • BIGINTDOUBLE:8个字节
  3. 时间类型
    • DATE:3个字节
    • TIMESTAMP:4个字节
    • DATETIME:8个字节
  4. 字段属性
    • NULL 属性占用1个字节,如果一个字段设置了 NOT NULL,则没有此项

3. profile 分析执行耗时

explain 只是看到 SQL 的预估执行计划如果要了解 SQL 真正的执行线程状态及消耗的时间,需要使用 profiling

开启 profiling 参数后,后续执行的 SQL 语句都会记录其资源开销,包括 IO,上下文切换,CPU,内存等等,我们可以根据这些开销进一步分析当前慢 SQL 的瓶颈再进一步进行优化

查看是否开启 profiling:

show variables like '%profil%'

开启 profiling :

set profiling=ON

使用 profiling :

show profiles

在这里插入图片描述

show profiles 会显示最近发给服务器的多条语句,条数由变量 profiling_history_size 定义,默认是 15。如果我们需要看单独某条 SQL 的分析,可以 show profile 查看最近一条 SQL 的分析,也可以使用 show profile for query id(其中id就是show profiles中的 QUERY_ID)查看具体一条的 SQL 语句分析:

在这里插入图片描述

4. Optimizer Trace 分析详情

profile 只能查看到 SQL 的执行耗时,但是无法看到 SQL 真正执行的过程信息,即不知道 MySQL 优化器是如何选择执行计划。这时候,我们可以使用 Optimizer Trace,它可以跟踪执行语句的解析优化执行的全过程

开启:

set optimizer_trace="enabled=on";

在这里插入图片描述

查看分析其执行树,会包括三个阶段:

  • join_preparation:准备阶段
  • join_optimization:分析阶段
  • join_execution:执行阶段

在这里插入图片描述

5. 确定问题并采用相应的措施

确认问题,就采取对应的措施。

  • 多数慢 SQL 都跟索引有关,比如不加索引,索引不生效、不合理等,这时候,我们可以优化索引
  • 我们还可以优化 SQL 语句,比如一些in元素过多问题(分批),深分页问题(基于上一次数据过滤等),进行时间分段查询
  • SQL 没办法很好优化,可以改用 ES 的方式,或者数仓
  • 如果单表数据量过大导致慢查询,则可以考虑分库分表
  • 如果数据库在刷脏页导致慢查询,考虑是否可以优化一些参数,跟 DBA 讨论优化方案
  • 如果存量数据量太大,考虑是否可以让部分数据归档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/299992.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis缓存穿透、缓存击穿、缓存雪崩介绍

一、Redis的缓存穿透 1.什么是缓存穿透&#xff1f; 缓存穿透是指&#xff1a;客户端请求的数据在缓存中和数据库中都不存在&#xff0c;这时缓存就永远不会生效&#xff0c;这些请求都打到数据库从而导致数据库压力过大。 2.出现缓存穿透的解决方案&#xff0c;以下是常用的两…

力扣经典面试题——搜索旋转排序数组及最小值(二分搜索旋转数组系列一次搞定)

我们先来看看一个常规的二分搜索是如何进行的&#xff1f; 例如要找一个有序数组的某个数 【1&#xff0c;2&#xff0c;4&#xff0c;5&#xff0c;9&#xff0c;11&#xff0c;15&#xff0c;19】 我们要找11&#xff0c;每次我们分割半边判断然后看到底在哪一边。 这里为什么…

TCP 三次握手:四次挥手

TCP 三次握手/四次挥手 TCP 在传输之前会进行三次沟通&#xff0c;一般称为“三次握手”&#xff0c;传完数据断开的时候要进行四次沟通&#xff0c;一般称为“四次挥手”。 数据包说明 源端口号&#xff08; 16 位&#xff09;&#xff1a;它&#xff08;连同源主机 IP 地址…

sql_lab之sqli注入中的cookie注入

Cookei注入&#xff08;gxa的从cookei注入&#xff09; 1.打开控制台 2.验证id2时的值 document.cookie"id2" 3.判断是上面闭合方式 document.cookie"id2 -- s" 有回显 说明是’单引号闭合 4.用order by 判断字段数 5.用联合查询判断回显点 接下来的…

Flowable-升级为7.0.0.M2-第一节

目录 升级jdk升级springboot到3.1.3升级数据库连接池druid-spring-boot-3-starter到1.2.20升级mybatis-plus到3.5.3.2升级flowable到7.0.0.M2 最近有些读者一直问flowable如何升级到7.0.0.M2&#xff0c;接下来我就一步步的把flowable升级到7.0.0.M2 升级jdk flowable7.x采用的…

框架面试题

文章目录 1. spring中的bean是线程安全的吗2. 事务的实现--AOP3. 项目中用到的AOP4.spring中事务的失效场景5. Bean的生命周期6.spring中的循环引用问题7. springMVC的执行流程8. springboot自动装配原理9. 常见注解10 Mybatis11 Mybatis一二级缓存 1. spring中的bean是线程安全…

docker的一些思考

1.docker是啥&#xff1f; 2.镜像执行流程 3.一些疑惑和解答 1. 2.

【教学类-42-03】20231225 X-Y 之间加法题判断题3.0(确保错误题有绝对错误的答案)

背景需求&#xff1a; 根据需求&#xff0c;0-5以内的判断是21题正确&#xff0c;21题错误&#xff0c;但由于错误答案是随机数抽取&#xff0c;有可能恰好是正确的&#xff0c;所以会出现每套题目的正确数和错误数不一样的情况 优化思路一&#xff1a; 设置如果错误答案与正…

图像九宫格切分1x3、3x3 Python

文章目录 1、需求2、实现2-1 贴图、切分2-2 GUI 3、运行效果4、代码 1、需求 把一个图像切分成 1x3 或者 3x3切分出来的图像比例希望都是 1:1 正方形如果图像尺寸满足 切分条件&#xff0c;自动填充一些“白边”然后继续切分如果填充了白边的话&#xff0c;希望能够调整原图像…

Go 语言实战:掌握正则表达式的应用与技巧

Go 语言实战&#xff1a;掌握正则表达式的应用与技巧 1. 引言2. 正则表达式基础2.1 基本概念2.2 常见元素2.3 基本示例 3. Go语言中的正则表达式库3.1 引入regexp包3.2 编译正则表达式3.3 使用正则表达式3.4 示例代码 4. 常用正则表达式函数及使用示例4.1 MatchString4.2 FindS…

数据库01_增删改查

1、什么是数据&#xff1f;什么是数据库&#xff1f; 数据&#xff1a;描述事物的符号记录称为数据。数据是数据库中存储的基本对象。数据库&#xff1a;存放数据的仓库&#xff0c;数据库中可以保存文本型数据、二进制数据、多媒体数据等数据 2、数据库的发展 第一阶段&…

Fireblock:为Dapp实现可编程隐私

1. 引言 Fireblock network为Cosmos生态应用链。并于2023年10月宣布完成pre-seed轮250万美金融资。 其定位为实现&#xff1a; 有条件解密可编程隐私 Fireblock使用的密码学方案有&#xff1a; distributed key generation&#xff08;DKG&#xff09;Identity-based encry…