助力打造清洁环境,基于轻量级YOLOv8开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统

公共社区环境生活垃圾基本上是我们每个人每天几乎都无法避免的一个问题,公共环境下垃圾投放点都会有固定的值班时间,但是考虑到实际扔垃圾的无规律性,往往会出现在无人值守的时段内垃圾堆放垃圾桶溢出等问题,有些容易扩散的垃圾比如:碎纸屑、泡沫粒等等,一旦遇上大风天气往往就会被吹得遍地都是给垃圾清理工作带来负担。

本文的主要目的及时想要探索分析通过接入社区实时视频流数据来对公共环境下的垃圾投放点进行自动化的智能分析计算,当探测到异常问题比如:随意堆放垃圾、垃圾桶溢出等问题的时候结合一些人工业务预设的规则来自动通过短信等形式推送事件给相关的工作人员来进行及时的处置这一方案的可行性,博文主要是侧重对检测模型的开发实现,业务规则需要到具体的项目中去细化,这块就不作为文本的实践内容。

在前文中,我们已经陆续开发了相关的实践项目,感兴趣的话可以自行移步阅读即可:

《助力打造清洁环境,基于YOLOv3开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于YOLOv4开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于YOLOv5全系列模型【n/s/m/l/x】开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于美团最新YOLOv6-4.0开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》 

《助力打造清洁环境,基于YOLOv7开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

本文主要是想要基于YOLOv8这一最新的技术模型来开发实践性质的项目,首先看下实例效果:

简单看下实例数据情况:

如果对于如何从零开始基于YOLOv8模型来开发构建自己的个性化检测项目有疑问的,可以移步阅读我的超详细教程:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型。

分类也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
acc
top1
acc
top5
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B) at 640
YOLOv8n-cls22466.687.012.90.312.74.3
YOLOv8s-cls22472.391.123.40.356.413.5
YOLOv8m-cls22476.493.285.40.6217.042.7
YOLOv8l-cls22478.094.1163.00.8737.599.7
YOLOv8x-cls22478.494.3232.01.0157.4154.8

分割也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg64036.730.596.11.213.412.6
YOLOv8s-seg64044.636.8155.71.4711.842.6
YOLOv8m-seg64049.940.8317.02.1827.3110.2
YOLOv8l-seg64052.342.6572.42.7946.0220.5
YOLOv8x-seg64053.443.4712.14.0271.8344.1

姿态估计也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPpose
50-95
mAPpose
50
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-pose64050.480.1131.81.183.39.2
YOLOv8s-pose64060.086.2233.21.4211.630.2
YOLOv8m-pose64065.088.8456.32.0026.481.0
YOLOv8l-pose64067.690.0784.52.5944.4168.6
YOLOv8x-pose64069.290.21607.13.7369.4263.2
YOLOv8x-pose-p6128071.691.24088.710.0499.11066.4

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我选择的是最为轻量级的n系列的模型,如下所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 3  # number of classes
scales: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

等待训练完成后看下结果详情:

【数据分布可视化】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【混淆矩阵】

【训练过程可视化】

【Batch计算实例】

离线推理实例如下所示:

这里我选择的是最为轻量级的n系列的模型,后续会再尝试开发其他参数量级的模型,感兴趣的话都可以自行尝试下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300128.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

正则表达式:元字符

一、什么事元字符 正则是由一系列的元字符组成的,所谓元字符就是指那些在正则表达式中具有特殊意义的专用字符,元字符是构成正则表达式的基本元件。 二、元字符的分类 1.特殊单字符 效果: ①.任意字符(换行符除外)&…

Flink电商实时数仓(六)

交易域支付成功事务事实表 从topic_db业务数据中筛选支付成功的数据从dwd_trade_order_detail主题中读取订单事实数据、LookUp字典表关联三张表形成支付成功宽表写入 Kafka 支付成功主题 执行步骤 设置ttl,通过Interval join实现左右流的状态管理获取下单明细数据…

[内功修炼]函数栈帧的创建与销毁

文章目录 1:什么是函数栈帧2:理解函数栈帧能解决什么问题呢3:函数栈帧的创建与销毁的解析3.1:什么是栈3.2:认识相关寄存器与汇编指令相关寄存器相关汇编指令 3.3 解析函数栈帧的创建和销毁3.3.1 预备知识3.3.2 详细解析一:调用main函数,为main函数开辟函数栈帧First:push前push…

麦肯锡产品经理问题解决流程终极指南

您是否想知道世界上最成功的产品经理如何始终如一地提供不仅满足而且超出预期的解决方案?秘密可能就在于世界上最负盛名的咨询公司之一麦肯锡公司所磨练的方法论。本文深入探讨了麦肯锡的问题解决流程,该流程专为希望提升水平的产品经理量身定制。 01. 麦…

NET中使用SQLSugar操作sqlserver数据库

目录 一、SqlSugar是什么? 二、迁移和建表 1.建立实体 2.创建上下文类 3.在Program中添加SqlSugar服务 4.在控制器中注入上下文类 三、简单实现CURD功能 总结 一、SqlSugar是什么? SqlSugar是一款老牌 .NET 开源ORM框架。 主要特点&#xff1a…

致远互联FE协作办公平台 editflow_manager.jsp SQL注入漏洞

漏洞描述 致远互联FE协作办公平台是一款为企业提供全方位协同办公解决方案的产品。它集成了多个功能模块,旨在帮助企业实现高效的团队协作、信息共享和文档管理。致远互联FE协作办公平台editflow_manager存在sql注入漏洞,攻击者可以获得敏感信息。 资产…

LeetCode-环形链表问题

1.环形链表(141) 题目描述: 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统…

三叠云工程劳务管理,优化建筑施工管理,提升效率与质量

随着建筑行业的蓬勃发展,工程施工现场管理变得愈发复杂。传统的人员管理方式已经无法满足企业快速发展的需求。如何提高施工效率、优化人力资源管理成为了建筑企业亟待解决的问题。逐渐走向数字化的工程建设行业,急需一种足以匹配这一时代变革、高效管理…

渗透测试——1.3计算机网络基础

一、黑客术语 1、肉鸡:被黑客攻击电脑,可以受黑客控制不被发现 2、端口(port):数据传输的通道 3、弱口令:强度不高,容易被猜到的口令、密码 4、客户端:请求申请电脑(…

SQL实践篇(二):为什么微信用SQLite存储聊天记录?

文章目录 简介什么是SQLite在python中使用SQLite通过SQLite查询微信的聊天记录参考文献 简介 SQLite是一个嵌入式的开源数据库引擎,大小只有3M左右,因此我们可以将整个SQLite嵌入到应用中,而不再需要采用传统的客户端/服务器(CS&…

《试题与研究》期刊发表投稿方式

《试题与研究》杂志是面向全国公开发行的国家CN级权威教育期刊。创刊以来一直以服务教育服务学生为办刊宗旨,以优秀的内容质量和编校质量深受广大读者好评,其权威性、导向性、针对性、实用性在全国教育期刊中独树一帜。为推动教育科研事业的发展&#xf…

【K8S in Action】服务:让客户端发现pod 并与之通信(2)

一 通过Ingress暴露服务 Ingress (名词) 一一进入或进入的行为;进入的权利;进入的手段或地点;入口。一个重要的原因是每个 LoadBalancer 服务都需要自己的负载均衡器, 以及 独有的公有 IP 地址, 而 Ingres…