智能优化算法应用:基于减法平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于减法平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于减法平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.减法平均算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用减法平均算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.减法平均算法

减法平均算法原理请参考:https://blog.csdn.net/u011835903/article/details/130542885
减法平均算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

减法平均算法参数如下:

%% 设定减法平均优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明减法平均算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300482.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

H266/VVC帧间预测编码技术概述

帧间预测编码简述 帧间预测利用视频时间域的相关性,使用邻近已编码图像像素值预测当前图像的像素值,能有效去除视频时域冗余。 目前主要的视频编码标准中,帧间预测都采用基于块的运动补偿技术,不同的编码标准有不同的分块方式。 …

【UML】第12篇 序列图(1/2)——基本概念和构成

目录 一、什么是序列图(Sequence Diagram) 1.1 定义 1.2 主要用途 1.3 序列图和BPMN的区别和联系 二、序列图的构成 2.1 对象 2.2 生命线 2.3 消息 2.4 激活 序列图,是我个人认为的用处最多的一种图。产品和研发的同学,都…

CentOS安装MongoDB

CentOS安装MongoDB 文章目录 CentOS安装MongoDB1. 安装并运行2. 创建用户/密码3. 测试语句4. 允许外网访问 1. 安装并运行 在 CentOS 上安装 MongoDB,你可以按照以下步骤进行: 导入 MongoDB 的 GPG 密钥: sudo rpm --import https://www.mon…

XxlJob 常见的报错

XxlJob 启动日志报错: 报错一: ERROR c.x.job.core.util.XxlJobRemotingUtil - Connection refused: connect java.net.ConnectException: Connection refused: connect 解决方法: 要启动的类是 XxlJobAdminApplication ,而不是…

什么是集成测试?它和系统测试的区别是什么? 操作方法来了

01 什么是集成测试? 集成测试是软件测试的一种方法,用于测试不同的软件模块之间的交互和协作是否正常。集成测试的主要目的是确保不同的软件模块能够无缝协作,形成一个完整的软件系统,并且能够满足系统的需求和规格。 在集成测试…

电商数据分析-02-电商业务介绍及表结构

参考 电商业务简介 大数据项目之电商数仓、电商业务简介、电商业务流程、电商常识、业务数据介绍、电商业务表、后台管理系统 举个例子:🌰 1.1 电商业务流程 电商的业务流程可以以一个普通用户的浏览足迹为例进行说明,用户点开电商首页开始浏览&…

【回溯】n皇后问题Python实现

文章目录 [toc]问题描述问题转换回溯法时间复杂性Python实现 个人主页:丷从心 系列专栏:回溯法 问题描述 有一批共 n n n个集装箱要装上 2 2 2艘载重量分别为 c 1 c_{1} c1​和 c 2 c_{2} c2​的轮船,其中集装箱 i i i的重量为 w i w_{i} w…

c# OpenCvSharp透视矫正六步实现透视矫正(八)

透视矫正,引用文档拍照扫描,相片矫正这块。 读取图像Cv2.ImRead();预处理(灰度化,高斯滤波、边缘检测)轮廓检测(获取到最大轮廓)获取最大面积轮廓的四个顶点标识最小矩形坐标透视矫正显示 完整代码 // 1、…

【数据结构】LRU缓存的简单模拟实现(leetcode力扣146LRU缓存)

文章目录 一、定义二、LRU模拟实现二、代码实现 一、定义 LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。 Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就…

\r\n和缓冲区/进度条小程序

一 前置知识 带有\n就会立马刷新缓冲区,\r不会刷新缓冲区 刷新的2个场景: 1 ~fflush 缓冲区中存在\r或\n --> \r fflush --> 不换行的\n) 2 ~ 文件关闭自动刷新缓冲区 倒计时小程序0-9 倒计时小程序0-99

PostgreSQL 可观测性最佳实践

简介 软件简述 PostgreSQL 是一种开源的关系型数据库管理系统 (RDBMS),它提供了许多可观测性选项,以确保数据库的稳定性和可靠性。 可观测性 可观测性(Observability)是指对数据库状态和操作进行监控和记录,以便在…

中间继电器的文字符号和图形符号

中间继电器的文字符号和图形符号 中间继电器主要用途是当其他继电器触头数量或容量不够时,可借助中间继电器扩充触头数目或增大触头容量,起中间转换作用。将多个中间继电器相组合,还能构成各种逻辑运算电器或计数电器。 中间继电器文字符号…