Python - 深夜数据结构与算法之 Recursion

目录

一.引言

二.递归的简介

1.Recursion 递归

2.Factorial 阶乘

3.Template 模版

三.经典算法实战

1.Generate-Parentheses [22]

2.Climbing-Stairs [70]

3.Is-Valid-BST [98]

4.Max-Depth [104]

5.Construct-Binary-Tree [105]

6.Min-Depth [111]

7.Invert-Tree [226]

8.Ser-And-Deset-Binary-Tree [297]

9.Low-Common-Ancestor [236]

四.总结


一.引言

前面介绍了树和图,其中很多都用到了递归的方式,本文我们介绍泛型递归以及树的递归,加深对二者的印象。

二.递归的简介

1.Recursion 递归

递归的基本含义是我们通过构建一个函数体,不断自身调用直到停止,其本质上也是循环的一种,用我们小时候的说法叫:

注意虽然递归是循环且不断调用,但是一定要有退出条件,这里使用抽象的返回 1,视实际情况而定。

2.Factorial 阶乘

以阶乘计算为例,递归的实现其实是系统在内部构建一个栈,先进后出,最后一步一步调用出来,这里给出递归树的形式我们称为人肉递归,即自己模拟整个递归过程,用来更直观的理解递归。

3.Template 模版

◆ terminator - 终止条件,避免死循环,调用递归时一定要想好停止或者退出的边界条件

◆ process - 处理逻辑,每层递归的处理逻辑

◆ drill donw - 向下钻,很形象,其实就是到更深的一层继续探索,n -> n+1

◆ reverse state - 一些情况下需要保持该层的状态,此时需要再递归结束后进行恢复

Tips:

学过数学归纳法的同学应该比较熟悉递归,数学归纳法的步骤我们先初始化 f(1)、f(2),然后推广到 f(n),最后再证明 f(n+1) 也 ok 就 ok 了,递归也相似,我们需要把可拆解的重复问题进行归纳,然后推广到 f(x) 的通式上。 

三.经典算法实战

1.Generate-Parentheses [22]

括号生成: https://leetcode-cn.com/problems/generate-parentheses/

题目分析 

首先可以使用暴力法,共 2n 个字符,每次只能出 '(' 或者 ')',把所有结果的括号验证一下是否可用,即可。还有一种可以递归,观察上面的 n=3 的情况,对于有效的括号而言,其一定满足num-左括号 = num-右括号 and 最左边一定是 '(',所以我们可以从 0 -> n 递归生成并判断合法性。

逐步生成

class Solution(object):def generateParenthesis(self, n):""":type n: int:rtype: List[str]"""# 保存结果result = []self.generate(0, 0, n, "", result)return resultdef generate(self, left, right, n, s, result):if left == n and right == n:result.append(s)# 保证最左边一定是 '('if left < n:self.generate(left + 1, right, n, s + "(", result)# right 不够就补充if right < left:self.generate(left, right + 1, n, s + ")", result)

从左括号开始,后面遍历全部情况,并通过边界条件对生成进行过滤,避免无效的生成。这里主要还是明确递归四要素:

terminator - len(left) = len(right) && s.start_with('(')

process - s + '('  || s + ')'

drill donw - left + 1 || right + 1

recerse state - 没有全局变量改动,所以无需操作

2.Climbing-Stairs [70]

爬楼梯问题: https://leetcode-cn.com/problems/climbing-stairs/

题目分析 

我们尝试使用数学归纳法的思想,因为一次只能走 1 or 2 步,所以 f(1) = 1、f(2) = 2、往后类推,对于 f(n) 的情况,其有两种方式到达,一种是 f(n-1) 走 1 步,还有事 f(n-2) 走两步,所以:

f(n) = f(n-1) + f(n-2)

即走到 n 有几种方法,就等于走到 n-1 和 n-2 方法的和,同理,走到 n-1 是走到 n-2 和 n-3 的方法的和,依次类推。退出条件,退出条件就是到达 1 or 2 即可。

递归实现

class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""# 终止条件if n <= 2:return n# 下一层return self.climbStairs(n-1) + self.climbStairs(n-2)

这里我们根据递归的模版,直接套即可得到上述代码,边界条件的 1->1、2->2 我们合在一起。不过时间超出限制了,我们每次扩展 n-1、n-2 两个分叉,共 n 次,所以时间复杂度是 2^^n,还是有点高,但是能够匹配模版就说明我们递归的思想逐渐熟悉。

滑动数组

class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""if n <= 2:return na, b, c = 1, 2, 3# 滑动数组for i in range(3, n):a, b, c = b, c, b+creturn c

熟悉 Fib 即斐波那契数列的同学可以看出 f(n) = f(n-1) + f(n-2) 其实是其对应通式,我们可以通过滑动数组的方式,不断向前推进求解,只需要 o(n) 的时间复杂的和常数的空间复杂度。 

3.Is-Valid-BST [98]

有效二叉搜索树: https://leetcode-cn.com/problems/validate-binary-search-tree

题目分析

二叉搜索树有效的定义在图中已经给出,左边的比 root 小,右边的比 root 大,根据中序遍历 '左根右' 遍历二叉搜索树即可得到一个有序的数组,我们只需判断 pre 节点的值是否小于当前的值即可。

中序遍历 - 递归

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = rightclass Solution(object):pre = -999999999999999def isValidBST(self, root):# 停止条件if root is None:return True# 遍历左子树if not self.isValidBST(root.left):return False# 上一个值大于等于下一个则为异常if root.val <= self.pre:return Falseself.pre = root.val# 遍历右子树return self.isValidBST(root.right)

参考递归的中序遍历写法,在 val 值处进行递增顺序的判断。

中序遍历 - 栈

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def isValidBST(self, root):""":type root: TreeNode:rtype: bool"""stack = []cur = rootpre = Nonewhile cur or stack:if cur:stack.append(cur)cur = cur.leftelse:cur = stack.pop()# 在中序遍历的基础上添加了顺序的判断if pre and cur.val <= pre.val:return Falsepre = curcur = cur.rightreturn True

中序遍历的模版,只是在 process val 的位置由 append or print 变成了比较是否有序。

4.Max-Depth [104]

二叉树最大深度: https://leetcode-cn.com/problems/maximum-depth-of-binary-tree

题目分析

采用 DFS 递归遍历左右子树,每 DFS 一层就为层数增加1,最后统计 max(左,右) 即可得到最深的深度。

递归实现

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def maxDepth(self, root):""":type root: TreeNode:rtype: int"""# 停止条件if not root:return 0 else:# 向下出发left_h = self.maxDepth(root.left)right_h = self.maxDepth(root.right)# +1: 根节点return max(left_h, right_h) + 1

 向下遍历,遍历时返回自己位置左右子树较高的层数并加上自己所在层的 1。

5.Construct-Binary-Tree [105]

重建二叉树: https://leetcode.cn/problems/construct-binary-tree-from-preorder-and-inorder-traversal

题目分析

pre -> 根左右 in -> 左根右,根据这个逻辑,我们可以从 preorder 确定全局的 root 节点,根据 root 节点的位置,我们在中序遍历中可以获取其左子树和右子树的长度,对于左右子树而言,其前序和中序遍历的长度是一样的,所以可以向下递归,对左右子树分别寻找 root。

递归遍历

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def buildTree(self, preorder, inorder):""":type preorder: List[int]:type inorder: List[int]:rtype: TreeNode"""# 根据 pre 可以获得根节点if not preorder and not inorder:return None# pre -> 根左右 in -> 左根右root = TreeNode(preorder[0])# 获取根节点位置mid_index = inorder.index(root.val)root.left = self.buildTree(preorder[1: mid_index + 1], inorder[: mid_index])root.right = self.buildTree(preorder[mid_index + 1:], inorder[mid_index + 1:])return root

大家可以结合上面的思路和 GIF 图理解递归的意图。 

6.Min-Depth [111]

二叉树最小深度: https://leetcode.cn/problems/minimum-depth-of-binary-tree/description/

题目分析

采用 DFS 递归遍历左右子树,每 DFS 一层就为层数增加1,最后统计 min(左,右) 即可得到最小的深度,和上面 Max Depth 是反着来的。但是这里求最小路径时,需要注意边际条件 max depth 有一点差别,当一边为空,一边有叶子节点时,min 的判断方法需要修改,参考下图,左边深度 0,右边深度 4,如果采用 min(0, 4) + 1 则最小为 1,但是题目要求根节点到最近的叶节点,所以我们要 if 把一边 root == None 的情况排除掉。

递归实现

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def minDepth(self, root):""":type root: TreeNode:rtype: int"""# 无根 -> 0if not root:return 0# 无孩 -> 1if not root.left and not root.right:return 1# 向下递归left_height = self.minDepth(root.left)right_height = self.minDepth(root.right)# 当一边为空一边不为空时,min(h,r) 会返回1,但此时 root 存在叶节点,所以 l+r+1# 因为如果有一个为空 其返回为0,不会影响最终结果if not root.left or not root.right:return left_height + right_height + 1return min(right_height, left_height) + 1

按照题解思路实现即可。 

7.Invert-Tree [226]

反转二叉树: https://leetcode-cn.com/problems/invert-binary-tree/description/ 

题目分析

交换左右子树,对于 root 交换其左右,继续向下对 left 交换左右,对 right 交换左右 ... 典型的递归题目。

左右递归

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def invertTree(self, root):""":type root: TreeNode:rtype: TreeNode"""# 停止条件if not root:return None# 处理 左右交换root.left, root.right = root.right, root.left# 向下出发self.invertTree(root.left)self.invertTree(root.right)# 无全局变量修改return root

再啰嗦一遍递归四步法: 停止条件 + 处理 + 下一层 + 恢复状态。

8.Ser-And-Deset-Binary-Tree [297]

BT 序列化与反序列化: https://leetcode-cn.com/problems/serialize-and-deserialize-binary-tree/ 

题目分析

这个题目整体来说不麻烦,但是很绕,而且很容易和官方要求的返回内容不一致。我们编码阶段可以通过 BFS 层序遍历将结果生成为符号分割的字符串,或者存到 [] 再使用 ','.jion。解码时只需要根据节点对应关系依次还原 Node 即可,需要注意 python 中如果节点为 None,需要返回特定的字符串标识并在解码时识别,下面示例采用 "null"。

BFS 层序遍历

class Codec:def serialize(self, root):"""Encodes a tree to a single string.:type root: TreeNode:rtype: str"""if not root:return ""queue = collections.deque([root])res = []while queue:node = queue.popleft()if node:res.append(str(node.val))queue.append(node.left)queue.append(node.right)else:res.append('None')return '[' + ','.join(res) + ']'def deserialize(self, data):"""Decodes your encoded data to tree.:type data: str:rtype: TreeNode"""if not data:return []dataList = data[1:-1].split(',')root = TreeNode(int(dataList[0]))queue = collections.deque([root])i = 1while queue:node = queue.popleft()if dataList[i] != 'None':node.left = TreeNode(int(dataList[i]))queue.append(node.left)i += 1if dataList[i] != 'None':node.right = TreeNode(int(dataList[i]))queue.append(node.right)i += 1return root

这里使用 index += 1 和 queue 配合分别决定下一个 node 该匹配给谁。这里博主自己实现了一版通过父亲索引寻找对应节点的方法,本地可以验证但乐扣总是少 None,也懒得纠结了,放在这里有兴趣的同学可以看看,主要思想是通过 parent = int((i - 1) / 2) 的父亲节点计算公式和 choose = ["l", "r"] 决定当前节点该放左还是右。

class Codec:def bfs(self, root):result = []if root is None:returnmy_queue = [root]while my_queue:# 返回列表第一个节点的数据node = my_queue.pop(0)result.append(node.val)if node.left is not None:my_queue.append(node.left)if node.right is not None:my_queue.append(node.right)return resultdef serialize(self, root):"""Encodes a tree to a single string.:type root: TreeNode:rtype: str"""result = []if not root:return ""queue = [root]# BFS 遍历二叉树while queue:node = queue.pop(0)result.append(str(node.val))if node.left:queue.append(node.left)if node.right:queue.append(node.right)return ",".join(result)def deserialize(self, data):"""Decodes your encoded data to tree.:type data: str:rtype: TreeNode"""if not data:returntree = data.split(",")root = TreeNode(int(tree[0]))result = [root]choose = ["l", "r"]for i in range(1, len(tree)):parent = int((i - 1) / 2)c = choose[(i-1) % 2]if tree[i] != "None":cur_tree = TreeNode(int(tree[i]))else:cur_tree = TreeNode(None)if c == "l":result[parent].left = cur_treeresult.append(cur_tree)if c == "r":result[parent].right = cur_treeresult.append(cur_tree)return result[0]

9.Low-Common-Ancestor [236]

二叉树最近公共祖先: https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-tree

题目分析

根据题目要求,p、q 公共祖先共有如上三种情况,考虑通过递归对二叉树进行前序遍历,当遇到节点 p 或 q 时返回。从底至顶回溯,当节点 p,q 在节点 root 的异侧时,节点 root 即为最近公共祖先,则向上返回 root 。

DFS 遍历

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = Noneclass Solution(object):def lowestCommonAncestor(self, root, p, q):""":type root: TreeNode:type p: TreeNode:type q: TreeNode:rtype: TreeNode"""# 退出条件: 顶节点没有祖先了,最高就这么高了if root == None or root == p or root == q:return root# 分别到左右子树找 p、q 的 rootleft = self.lowestCommonAncestor(root.left, p, q)right = self.lowestCommonAncestor(root.right, p, q)# 左边没找到,右边找if not left:return right# 右边没找到,左边找if not right:return leftreturn root

此题比较绕,推荐大家看大佬的图文题解: DFS 清晰图解。 

分头寻找

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = Noneclass Solution(object):def lowestCommonAncestor(self, root, p, q):""":type root: TreeNode:type p: TreeNode:type q: TreeNode:rtype: TreeNode"""record = {root: None}stack = [root]while stack:node = stack.pop()if node.left:record[node.left] = nodestack.append(node.left)if node.right:record[node.right] = nodestack.append(node.right)# p、q 都找都就可以退出了if p in record and q in record:break# 把 p 的父亲节点都标记while p:parent = record[p]record[p] = Truep = parent# 从 q 向上找,第一个为 True 的即为公共祖先while record[q] is not True:q = record[q]return q

 先通过遍历子树并记录的方法将 p 和 q 的全部父亲节点记录下来,随后标记 p 或者 q 的节点父亲为 True,然后从另一个节点的父亲自下而上寻找,第一个为 True 的就是公共的了。

四.总结

上面介绍了递归以及大量树的题目,因为树的结构与遍历天生比较适合递归实现,上面的题思路都很巧妙,属于看了忘、忘了看、几天不看全忘的状态,还是要多多练习多多巩固。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300535.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

buuctf-Misc 题目解答分解97-99

97.[BSidesSF2019]zippy 下载完就是一个流量包 追踪tcp nc -l -p 4445 > flag.zip unzip -P supercomplexpassword flag.zip Archive: flag.zip 压缩包密码 supercomplexpassword 保存为 flag.zip 解压得到flag 98.[GUET-CTF2019]虚假的压缩包 先从虚假的压缩包入手 &am…

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工兔算法4.实验参数设定5.算法结果6.参考文…

树莓派,mediapipe,Picamera2利用舵机云台追踪人手(PID控制)

一、项目目标 追踪人手大拇指指尖&#xff1a; 当人手移动时&#xff0c;摄像头通过控制两个伺服电机&#xff08;分别是偏航和俯仰&#xff09;把大拇指指尖放到视界的中心位置&#xff0c;本文采用了PID控制伺服电机 Mediapipe Hand简介 MediaPipe 手部标志任务可检测图像…

Dash中的callback的使用 多input 6

代码说明 import plotly.express as pxmport plotly.express as px用于导入plotly.express模块并给它起一个别名px。这样在后续的代码中&#xff0c;你可以使用px来代替plotly.express&#xff0c;使代码更加简洁。 plotly.express是Plotly的一个子模块&#xff0c;用于快速创…

关于Python里xlwings库对Excel表格的操作(十八)

这篇小笔记主要记录如何【设置单元格数据的对齐方式】。前面的小笔记已整理成目录&#xff0c;可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 &#xff08;1&#xff09;如何安装导入xlwings库&#xff1b; &#xff08;2&#xff09;如何在Wps下…

国企和互联网怎么选?

2023年马上就要结束了&#xff0c;天气还是很冷&#xff0c;大家今年的总结做了吗&#xff1f; 正好这两天看到另外一个我关注的博主更新了一个自己的年终总结。其中有一些话令人印象深刻。 未来对我来说&#xff0c;毫无吸引力。原因很简单&#xff0c;当下已经足够令人清醒、…

【各种**问题系列】Java 数组集合之间的相互转换

&#x1f4cc; 问题点&#xff1a; 在 Coding 过程中经常会遇到数组、List、Set、Map 之间的相互转换......这里记录一下转换的几种方式。&#x1f636;&#x1f636;&#x1f636; 目录 &#x1f4cc; 集合转换 1.数组 转 List&#xff1a; 2.List 转 数组&#xff1a; 3…

STM32F407-14.3.10-表73具有有断路功能的互补通道OCx和OCxN的输出控制位-1x110

如上表所示&#xff0c;MOE1&#xff0c;OSSR1&#xff0c;CCxE1&#xff0c;CCxNE0时&#xff0c;OCx对应端口的输出状态取决于OCx_REF与极性选择&#xff08;CCxP&#xff09;&#xff1b;OCxN输出状态取决于极性选择&#xff08;CCxNP&#xff09;。 ---------------------…

为何教育行业需要搭建自己的知识付费平台,而非入驻其他公域流量平台

在当今的知识经济时代&#xff0c;教育行业正面临着前所未有的机遇和挑战。随着知识付费市场的蓬勃发展&#xff0c;越来越多的教育机构和个人教师选择进入这一领域&#xff0c;以扩大影响力并实现知识变现。然而&#xff0c;在选择进入知识付费市场的路径时&#xff0c;教育行…

OGG-MySQL无法正常同步数据问题分析

问题背景: 用户通过OGG从源端一个MySQL从库将数据同步到目标端的另一个MySQL数据库里面&#xff0c;后面由于源端的从库出现了长时间的同步延时&#xff0c;由于延时差距过大最后选择通过重建从库方式进行了修复 从库重建之后&#xff0c;源端的OGG出现了报错ERROR OGG-0014…

C# 初识System.IO.Pipelines

写在前面 在进一步了解Socket粘包分包的过程中&#xff0c;了解到了.NET 中的 System.IO.Pipelines&#xff0c;可以更优雅高效的解决这个问题&#xff1b;先跟随官方的示例做个初步的认识。 System.IO.Pipelines 是一个库&#xff0c;旨在使在 .NET 中执行高性能 I/O 更加容…

【论文阅读】MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention

文章目录 摘要创新点总结实现效果总结 摘要 链接&#xff1a;https://arxiv.org/abs/2312.08866 医学图像分割是医学图像处理和计算机视觉领域的关键挑战之一。由于病变区域或器官的大小和形状各异&#xff0c;有效地捕捉多尺度信息和建立像素间的长距离依赖性至关重要。本文提…