Anylogic Pro 8.8.x for Mac / for Linux Crack

Digital twins – a step towards a digital enterprise

AnyLogic是唯一一个支持创建模拟模型的方法的模拟建模工具:面向过程(离散事件)、系统动态和代理,以及它们的任何组合。AnyLogic提供的建模语言的独特性、灵活性和强大性使您能够以任何级别的细节考虑建模系统的任何方面。AnyLogic的图形界面、工具和库允许您快速创建模型,用于从生产建模、物流、业务流程到公司和市场发展的战略模型等广泛任务。

Digital transformation refers to the integration of digital technologies into various aspects of an organization, fundamentally changing how it operates and delivers value to its customers.

digital enterprise is the outcome of a successful digital transformation. It is an organization that has fully embraced digital technologies, processes, and culture to optimize its operations, deliver value to customers, and maintain a competitive edge in the market.

An integral part of digital transformation and eventually becoming a digital enterprise is integrating digital twin technology with a company’s operational workflows.

Simulation-based digital twins: how they work

Although there are many definitions of digital twins, here we are focusing on simulation-based digital twins. These are prospecting dynamic models that initialize themselves based on the current state of the real system and can explore future scenarios through simulations.

Simulation-based digital twins are created by integrating near-real-time data into a simulated embodiment, be it a factory, warehouse, or anything else. By keeping the state of the simulation model in sync with its real-world counterpart, digital twins enable organizations to monitor, analyze, and optimize the operation of their assets in a risk-free environment.

Aside from operation optimization, digital twins provide a virtual playground for exploring possible future scenarios. They help mitigate financial and operational risks and test the effect of proposed changes before implementing them in the physical world.

Explaining how simulation-based digital twins work and the decision-making process

How a digital twin works

A digital twin is triggered at specific times and initialized based on the real-time data from the physical system. After the initialization, various experiments (Monte-Carlo, Optimization, Parameter Variation, etc.) are carried out to explore possible future scenarios, and their output is used to make informed decisions in the real world through human operators or automated systems.

Now that we’ve clarified what we mean by a simulation-based digital twin, let’s see how this helps with more complicated business cases and ultimately enables you to build an Enterprise Simulation.

Enterprise Simulation – a unique approach to the next-level digital transformation

Enterprise Simulation is a set of deployed (and maybe interconnected) simulation-based digital twins that are likely to be used at the operational level and are accessible to a large number of stakeholders across the organization.

The set may comprise many (possibly heterogeneous) simulation models representing distributed business units. The models, however, share a common business application.

For example, in a restaurant chain, each restaurant branch has a different layout, menu, and set of customers with unique order patterns, but they all use similar equipment, procedures, and an overall business model – and so would a set of digital twins of such businesses.

Explaining the process of a company becoming a digital enterprise through digital transformation

A company undergoes digital transformation to become a digital enterprise
with multiple digital twins as one integrated system – Enterprise Simulation

Technically, you can view Enterprise Simulation as an organization-wide application with a web interface deployed on servers or a corporate cloud with multiple users and access rights controlled by an administrator.

In the simplest case, there can be a digital twin of just one unit:

  • one warehouse,
  • one fulfillment center, or
  • one restaurant.

This is what you would typically start with. Having successfully developed, deployed, and proven the operational usefulness of the first twin, you can expand that technology to other units or other locations, eventually creating the Enterprise Simulation.

Enterprise Simulation significantly impacts the lifecycle of simulation models

A traditional simulation lifecycle

A simulation model life cycle has two main phases.

  1. The “Creation” phase is an iterative process that includes conceptual modeling, logic coding, data integration, debugging, verification, and validation.
  2. The “Use” phase includes parameterizing and running the simulation, performing experiments of different types, and then analyzing and using the outputs.

Traditional simulations typically stay at the strategic or tactical level and are rarely designed to function as operational decision support systems. These “old-school” simulation models spend most of their lifecycle time in the “Creation” phase. They are briefly in the “Use” phase – just long enough to run some experiments and produce results to be included in the reports and presented to management.

A simulation-based digital twin lifecycle

The concept of Digital Enterprise, which is aimed at providing monitoring, planning, and forecasting tools, changes that paradigm. Digital twins, an essential part of the Digital Enterprise, are simulation models used at an operational or, less often, tactical level. This shift is a natural progression and an integral part of broader digital transformation initiatives.

A pair of scales with the Use part outweighing the Creation part

Impact of digital transformation on the simulation lifecycle – shifting it to the “Use” phase

Differences between conventional simulation models and digital twin models

Mainly, traditional simulation models work on imported past data and are run on a developer’s computer or laptop. In contrast, simulation-based digital twins have access to near-real-time data from the physical system and run on the cloud or on the company’s own servers. For more, see the table below:

A table detailing a digital twin's Creation and Use phases

Digital twin “Creation” and “Use” phases as opposed to a traditional simulation lifecycle

AnyLogic ecosystem – all you need for building Enterprise Simulation

At the AnyLogic Company, we have strategically developed and architected an ecosystem consisting of AnyLogic model development software and AnyLogic Cloud, for Enterprise Simulation. It’s the singular comprehensive solution that addresses both the “Creation” and “Use” phases of digital twins.

AnyLogic simulation modeling software and AnyLogic Cloud for end-to-end Enterprise Simulation

AnyLogic simulation modeling software and AnyLogic Cloud for end-to-end Enterprise Simulation

AnyLogic model development software for the “Creation” phase

The original philosophy behind AnyLogic modeling languages and the AnyLogic model development environment was to push the boundaries in simulation methodologies, data connectivity, and interoperability with external tools and methods.

AnyLogic has become synonymous with scalability and extensibility in the simulation market. This is particularly important for operational-level modeling. Here’s what AnyLogic has to offer:

1. Multimethod approach to simulate any business

Operational models are typically complex, low-abstraction models with numerous detailed components. Having the freedom to use all three modeling methods within the modular object-oriented environment increases your chances of success in handling complexity and creating digital twins with “just enough” details in structure and behavior to handle the problem.

2. API within an AnyLogic model

All components of an AnyLogic model are fully covered with the API and contain “extension points” to access external APIs, databases, files, libraries, optimization solutions, and heuristics from anywhere in the model. This enables the sound integration of digital twins with streams of knowledge about the system.

3. Simulation and AI

AnyLogic pioneered the interoperability of simulation and AI, such as embedding trained ML models into simulations. This is a crucial factor in representing hybrid systems of the future, where AI plays a significant role in system behavior.

4. Sharable libraries of reuseable custom components

The ability to create sharable libraries of reuseable custom components (fully supported in AnyLogic) is vital in Enterprise Simulation, where creating hundreds of simulation models with significant similarities is a frequent case. This allows a few advanced modelers to focus on creating the foundational elements with core logic, while other modelers can fine-tune them to replicate the operations of particular business units.

AnyLogic Cloud platform for the “Use” phase

Having been acutely aware of the limitations associated with running simulation models in local environments, especially when the models are run-on-demand digital twins, the AnyLogic development team introduced a forward-looking product, AnyLogic Cloud.

AnyLogic Cloud stands as a real solution for the seamless deployment and intense enterprise-wide consumption of simulation models. AnyLogic Cloud can be installed on a company’s server or on a private cloud and scales from one to an unlimited number of servers.

See how you can benefit from AnyLogic Cloud:

1. Easily upload simulation models

The process of uploading and deploying an existing AnyLogic model from the model development environment to AnyLogic Cloud is done in just a few clicks, without requiring a single line of code.

2. Manage user access to the digital twins

The administrator’s interface and support for Active Directory and LDAP enable the IT team to easily manage end users and their access to the digital twins. This includes developer-level access needed for model updates and maintenance as well as user-level access for analysts and managers.

3. Use the API to embed simulations into operational workflows

In addition to the model API, AnyLogic Cloud has its own API in four different languages aimed at embedding simulations into operational workflows.

Use cases range from parameterizing digital twins, running experiments, streaming outputs (in text, Excel, JSON, and other forms), and integrating the simulation frontend directly into corporate BI interfaces. The latter is possible because AnyLogic models have a browser-based interactive frontend with 2D and 3D animation capable of running remotely from the server where the model is being executed.

4. Automate the digital twin’s trigger points

Going forward, you can leverage Large Language Models (LLMs) to automate trigger points for AnyLogic Cloud-based digital twins, interpret simulation feedback, and suggest interventions for the real system.

How to start with Enterprise Simulation

Within our AnyLogic software ecosystem, the concept of a digital twin – and, even wider, the Enterprise Simulation – that provides live feedback to a control tower is no longer just a conceptual vision; it is becoming a reality.

If you’re on the digital transformation journey and would like to know more about Enterprise Simulation, get in touch. Our experts will describe how it can be applied to your business and how to set up the tools you will need for building Enterprise Simulation.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300763.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

北亚服务器数据恢复-服务器断电导致raid5故障的数据恢复案例

服务器数据恢复环境: 服务器有一组由12块硬盘组建的raid5阵列。 服务器故障&分析: 机房供电不稳导致服务器意外断电,工作人员重启服务器后发现服务器无法正常使用。 根据故障情况,北亚企安数据恢复工程师初步判断服务器故障原…

目标检测-Two Stage-RCNN

文章目录 前言一、R-CNN的网络结构及步骤二、RCNN的创新点候选区域法特征提取-CNN网络 总结 前言 在前文:目标检测之序章-类别、必读论文和算法对比(实时更新)已经提到传统的目标检测算法的基本流程: 图像预处理 > 寻找候选区…

毕业首选 | CCF推荐1区SCI,IF:6.0,Elsevier出版社,最快仅1个月Accept!

【SciencePub学术】本期,小编给大家解析的是一本Elsevier旗下、CCF-C类、影响因子为6.0的中科院3区SCI。其详情如下: 期刊简介 COMPUTER COMMUNICATIONS ISSN:0140-3664 E-ISSN:1873-703X IF(2022)&a…

SQL server 数据库练习题及答案(练习3)

一、编程题 公司部门表 department 字段名称 数据类型 约束等 字段描述 id int 主键,自增 部门ID name varchar(32) 非空,唯一 部门名称 description varchar(1024) …

MySQL——表的内外连接

目录 一.内连接 二.外连接 1.左外连接 2.右外连接 一.内连接 表的连接分为内连和外连 内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我们前面学习的查询都是内连接,也是在开发过程中使用的最多的连接查询。 语法: s…

momentum2靶机

文章妙语 遇事不决,可问春风; 春风不语,遵循己心。 文章目录 文章妙语前言一、信息收集1.IP地址扫描2.端口扫描3.目录扫描 二,漏洞发现分析代码bp爆破1.生成字典2.生成恶意shell.php2.抓包 三,漏洞利用1.反弹shell 四…

深入剖析LinkedList:揭秘底层原理

文章目录 一、 概述LinkedList1.1 LinkedList简介1.2 LinkedList的优点和缺点 二、 LinkedList数据结构分析2.1 Node节点结构体解析2.2 LinkedList实现了双向链表的原因2.3 LinkedList如何实现了链表的基本操作(增删改查)2.4 LinkedList的遍历方式 三、 …

docker部署kafka zookeeper模式集群

单机模式链接:https://blog.csdn.net/wsdhla/article/details/133032238 kraft集群模式链接:部署Kafka_kafka 部署-CSDN博客 zookeeper选举机制举例: 目前有5台服务器,每台服务器均没有数据,它们的编号分别是1,2,3,4,5…

fpga 8段4位数码管verilator模拟

8段4位数码管verilator模拟 seg.v module seg(input wire clk,input wire rst_n,output wire[7:0] SEG,output wire[3:0] SEL );reg[7:0] digit[0:15] {8h3f, 8h06, 8h5b, 8h4f, 8h66, 8h6d, 8h7d,8h07,8h7f,8h6f, 8h77, 8h7c, 8h39, 8h5e, 8h79, 8h71};reg[31:0] cnt 32…

实战:朴素贝叶斯文本分类器搭建与性能评估

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

Python能做大项目(7) - Poetry: 项目管理的诗和远方之二

依赖管理 实现依赖管理的意义 我们已经通过大量的例子说明了依赖管理的作用。总结起来,依赖管理不仅要检查项目中声明的直接依赖之间的冲突,还要检查它们各自的传递依赖之间的彼此兼容性。 Poetry 进行依赖管理的相关命令 在 Poetry 管理的工程中&am…

800+顶尖架构师齐聚深圳,第十届GIAC全球互联网架构大会,分享行业前沿视角与技术架构落地实践思考!(附:大会核心PPT下载)

2023年6月30-7月1日,由MSUP与高可用架构社区、深圳市软件行业协会联合主办的GIAC全球互联网架构大会在深圳华侨城洲际酒店圆满落幕。 本届大会邀请到了阿里、美图、腾讯、字节跳动、顺丰、华为、快手、B站等多个行业的近百位一线架构师、技术专家,围绕AI…