【Linux系统编程】进程状态

介绍

        进程的状态指的是进程在执行过程中所处的状态。进程的状态随着进程的执行和外界条件的变化而转换。我们可用 kill 命令来进程控制进程的状态。

        kill中的 kill -l 指令用于查看系统中定义的所有信号及其对应的编号。这些信号可以用于 kill 命令来向进程发送特定的信号控制其状态。例如,kill - 9 命令会向进程发送 SIGKILL 信号,强制终止进程,kill -19 命令会向进程发送 SIGSTOP 信号,使进程进入暂停状态,如同 Ctrl+Z 组合键的效果,kill -18 命令用于向进程发送 SIGCONT 信号,使进程从暂停状态恢复执行,如同 Ctrl+C 组合键的效果。


系统下的进程主流状态

        进程在系统中主流的四个主要状态:运行状态、排队状态、阻塞状态、挂起状态。

运行状态

        首先,要说明,系统内部的所有进程不是一次性执行完毕的,而是在内部排队等待某种资源。

        进程只要在运行队列里或正在被CUP正在执行时,此进程就处于运行状态。部分教材中可能会说明有创建状态、就绪状态、阻塞状态等,这几种状态其实都是跟进程放入运行队列有关。

排队状态

        由于大部分计算机中只有一个CUP,而一个CUP一次只能运行一个进程队列,所以在Linux系统内核中,所有进入状态的进程必须依次“ 排队 ”等待,这里的“ 排队 ”并不是进程自己在“ 排队 ”等待,而是进程的 tast_struct 结构体在进行“ 排队”等待被CUP执行。

        其实不光是等待CPU执行时需要排队,在进程等待某种资源时,也会处于排队状态。如外设等。这里的排队等待,不像一般数据结构中的排队等待,而是将 task_struct 结构体嵌入到运行队列中,系统通过地址偏移量来进行访问里面的属性数据。具体实现如下:

        总的来说,进程的排队状态是指进程在等待被执行或等待获取资源时所处的一种状态。在排队状态下,进程会被放入相应的队列中,等待其前面的进程释放资源或完成其任务,当多个进程同时请求系统资源时,操作系统会根据一定的调度算法将这些进程按照一定的顺序排列,以便按照一定的优先级逐个分配资源。

阻塞状态

        阻塞状态是进程的执行过程中一种暂停状态,此时进程放弃处理机而处于暂停状态。当进程处于阻塞状态时会排成一个队列,形成这种情况通常是因为进程在等待某个事件的发生。如,当我们的进程在进行等待软硬件资源的时候,资源如果没有就绪,我们的进程task_struct 只能将自己设置为阻塞状态,并将自己的pcb连入等待的资源提供的等待队列。

挂起状态

        进程的挂起状态是指一个进程由于某些原因暂时不能执行,而被系统挂起来,等待以后执行。在这种状态下,进程不会占用内存空间,也不会被调度执行,进程只是被存储在磁盘上。这种状态通常发生在系统资源不足或者进程等待某些事件时发生。当条件允许时,被挂起的进程就会被操作系统再次调回内存,重新进入等待被执行的状态,即就绪态。


前台进程与后台进程   

        前台进程和后台进程是操作系统中的两种进程类型,它们在运行状态和行为上存在显著差异。一般情况下,进程中的可执行程序直接运行是前台进程,当在执行可执行程序时,在后面加上“ & ”符号,就变成了后台进程。前台进程和后台进程在进程状态符观察出。当查看进程状态时,若状态符后面有“ + ”号,此进程表示前台进程,若状态符后面没有“ + ”号,此进程表示后台进程。    

        通常情况下,前台进程可以直接使用键盘上的 Ctrl+C 来终止,但后台进程则需要使用特定的命令,如“ kill -9 [PID] ”来终止。因此,当我们设为后台进程时,用户必须要获取该进程的PID。


Linux内核源代码的进程状态

        在了解进程状态时,首先要明白系统内部定义的进程状态。在Linux内核中定义状态的源代码如下:

/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char* const task_state_array[] = {  //下面的大写首字母代表状态
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};

        R运行状态:表示进程正在处于系统的运行状态,与上面的运行状态效果一样,并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。

        S睡眠状态:进程在等待某件事件完成而进入睡眠。这种睡眠状态如同阻塞状态,有时候也叫做可中断睡眠,可直接用键盘进行中断。

        D磁盘休眠状态:这种状态有时候也叫不可中断睡眠状态,它用于资源管理。当进程的PCB指针放入磁盘结构体的队列中时,如果内存紧张,操作系统可能需要终止一些后台进程来缓解内存压力。但是,如果正在写入磁盘的数据很重要,直接终止可能会导致不良后果。此时将进程置于D状态可以确保即使在内存紧张的情况下,操作系统也不会终止它,直到IO操作完成。

        T停止状态:表示进程被暂定,如同 kill -19 命令停止运行进程。此状态也可理解为阻塞状态的分支。

        t停止状态:表示进程处于跟踪状态而暂定,通常用于调试目的。

注意:状态T和状态t都是表示进程被停止,其中,状态T停止是常规控制停止,而状态t停止是因为深入跟踪导致进程停止,通常用于调试。

        X死亡状态:此状态表示进程已经结束,并且可以被回收的状态。当一个进程完全结束执行,并且系统已经回收了其资源时,该进程就会进入X状态,因此,这个状态只是一个返回状态,我们不会在任务列表里看到这个状态。

        Z僵尸状态:表示一个进程已经结束执行,但其父进程还没有读取它的退出状态信息。在这种情况下,该进程会以终止状态保持在进程表中,等待父进程读取其退出状态代码。

        当一个进程退出时,它会将退出信息保存在task_struct中,供父进程或操作系统读取。如果父进程在子进程退出后仍然存在,但没有读取子进程的退出状态信息,子进程就会进入Z状态。处于Z状态的进程不会占用CPU资源,但会占用进程表中的一个槽位和内存,直到其父进程读取了其退出状态信息并对其进行回收,因此,僵尸进程可能会造成内存资源的浪费,有一定的危害。以下代码的子进程就为僵尸进程。

#include <iostream>
#include <unistd.h>
using namespace std;
int main()
{
    pid_t id = fork();
    if (id == 0)  //子进程
    {
        int n = 5;
        while (n)
        {
            cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
            sleep(1);
            n--;
        }
        exit(0);  //子进程退出
    }
    while (1)  //父进程运行
    {
        cout << "PID: " << getpid() << "   " << "PPID: " << getppid() << endl;
        sleep(1);
    }
    return 0;
}


孤儿进程

        孤儿进程是指一个进程的父进程已经终止,而该进程还在运行。

        由于孤儿进程原有的父进程已不存在,所以,孤儿进程通常由init进程(进程号为1)收养,并由init进程对它们完成状态收集工作。因此,孤儿进程并不会有什么危害。以下是孤儿进程的代码

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
    pid_t id = fork();
    if (id < 0) 
    {
        perror("fork");
        return 1;
    }
    else if (id == 0)   //子进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
    }
    else  //父进程
    {
        cout << "I am child, pid : " << getpid() << endl;
        sleep(5);
        exit(0);
    }
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/300944.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IP代理科普| 共享IP还是独享IP?两者的区别与优势

通俗地讲&#xff0c;共享IP就像乘坐公共汽车一样&#xff0c;您可以到达目的地&#xff0c;但将与其他乘客共享旅程&#xff0c;座位很可能是没有的。独享IP就像坐出租车一样&#xff0c;您可以更快到达目的地&#xff0c;由于车上只有您一个人&#xff0c;座位是您一个人专用…

SpringBoot3 核心技能

1. 常用注解 SpringBoot摒弃XML配置方式&#xff0c;改为全注解驱动 1. 组件注册 Configuration、SpringBootConfiguration Bean、Scope Controller、 Service、Repository、Component Import ComponentScan 步骤&#xff1a; 1、Configuration 编写一个配置类 2、在…

LabVIEW与PID在温度测控系统中的应用

LabVIEW与PID在温度测控系统中的应用 本案例介绍LabVIEW在温度控制系统中的应用&#xff0c;特别是结合PID算法。项目使用abVIEW作为主要开发工具&#xff0c;配合NI PCI-7831R数据采集和控制设备&#xff0c;实现了高效的温度调节。 系统的核心在于LabVIEW的FPGA模块&#x…

docker安装入门及redis,minio,rabbitmq应用安装

部分笔记来自黑马课堂&#xff1a;【黑马程序员Docker快速入门到项目部署&#xff0c;MySQL部署Nginx部署docker自定义镜像DockerCompose项目实战一套搞定-哔哩哔哩】 https://b23.tv/niWEhEF 一、什么是docker&#xff1a; 快速构建、运行、管理应用的工具。--帮助我们快速部…

大数据开发之Sqoop详细介绍

测试环境 CDH 6.3.1 Sqoop 1.4.7 一.Sqoop概述 Apache Sqoop&#xff08;SQL-to-Hadoop&#xff09;项目旨在协助RDBMS与Hadoop之间进行高效的大数据交流。用户可以在 Sqoop 的帮助下&#xff0c;轻松地把关系型数据库的数据导入到 Hadoop 与其相关的系统 (如HBase和Hive)中&…

Sql 动态行转列

SELECT ID, Name, [Month],auth FROM [Test].[dbo].[Test3] 数据列表&#xff1a; 1.静态行专列 Select auth, MAX( CASE WHEN [Month] 一月 then Name else null end) 一月, MAX( CASE WHEN [Month] 二月 then Name else null end) 二月, MAX…

STM32独立看门狗和窗口看门狗的区别

独立看门狗&#xff1a; 本质上是一个定时器&#xff0c;这个定时器有一个输出端&#xff0c;可以输出复位信号。 该定时器是一个 12 位的递减计数器&#xff0c;当计数器的值减到 0 的时候&#xff0c;就会产生一个复位信号。如果在计数没减到 0 之前&#xff0c;重置计数器的…

计算机毕业设计------SSM在线菜谱分享推荐平台网站

项目介绍 该项目为前后台项目&#xff0c;分为普通用户与管理员两种角色&#xff0c;前台普通用户登录&#xff0c;后台管理员登录&#xff1b; 管理员角色包含以下功能&#xff1a; 管理员登录,用户管理,一级分类管理,二级分类管理,美食管理,留言管理等功能。 用户角色包含…

如何进行安全管理

目录 安全管理 修改ECS实例登录密码 方式一&#xff1a;重置ECS实例密码 方式二&#xff1a;在实例内部修改登录密码 安全组 ECS实例加入安全组的规则 使用安全组 补丁管理 安全管理 如果希望保护网站安全&#xff0c;首先就要保护ECS实例安全&#xff0c;这需要对ECS实…

首个交通场景实例 中科驭数向重庆交开投交付网络DPU卡解决方案

中科驭数于2023年9月中标的某运营商项目&#xff0c;日前已正式向重庆交通开投科技发展有限公司&#xff08;简称“重庆交开投”&#xff09;交付。即日起&#xff0c;中科驭数KPU SWIFT-2200N S产品将正式应用于重庆交开投数字平台&#xff01; 按重庆交通开投集团数字化转型规…

【Unity学习笔记】1.创建场景

创建场景 注1&#xff1a;samplescene&#xff08;示例场景&#xff09;、standard assets&#xff08;标准资产&#xff09;、favorites&#xff08;收藏夹&#xff09;、terrain&#xff08;地形&#xff09;。 注2&#xff1a;favorites用于存放各种资源&#xff1b;sample…

CNAS中兴新支点——软件兼容测试从哪些方面判断

软件的兼容性是衡量软件好坏的一个重要指标&#xff0c;在具体测试中可以从以下几个方面来判断&#xff1a; 1、操作系统兼容性 软件可以运行在哪些操作系统平台上&#xff0c;理想的软件应该具有与平台无关性。有些软件在不同的操作系统平台上重新编译即可运行&#xff0c;有…