算法时间空间复杂度计算—空间复杂度

算法时间空间复杂度计算—空间复杂度

  • 空间复杂度定义
  • 影响空间复杂度的因素
    • 算法在运行过程中临时占用的存储空间讲解
  • 计算方法
  • 例子
    • 1、空间算法的常数阶
    • 2、空间算法的线性阶(递归算法)
    • 3、二分查找分析
      • 方法一(迭代法)
      • 方法二(递归法)
    • 4、斐波那契数列
      • 方法一(迭代法)
      • 方法二(递归法)

空间复杂度定义

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。
一个算法在计算机存储器上所占用的存储空间,包括程序代码所占用的空间输入数据所占用的空间辅助变量所占用的空间这三个方面。

影响空间复杂度的因素

在这里插入图片描述
注意:
一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变 量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为递归算法,其空间复杂度为递归所使用的堆栈空间的大小。它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)
递归的空间复杂度: 每次递归所开空间*深度。

算法在运行过程中临时占用的存储空间讲解

1、有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地”进行的,是节省存储的算法,下面会介绍。

2、有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况。

计算方法

①忽略常数,用O(1)表示
②递归算法的空间复杂度=递归深度n*每次递归所要的辅助空间
③对于单线程来说,递归有运行时堆栈,求的是递归最深的那一次压栈所耗费的空间的个数,因为递归最深的那一次所耗费的空间足以容纳它所有递归过程。

例子

1、空间算法的常数阶

在这里插入图片描述
如上图,这里有三个局部变量分配了存储空间,所以f(n) = 1 + 1 + 1 = 3,根据上面的法则该函数不受n的影响且为常数项,所以空间复杂度记作O(1)。这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的空间复杂度,又叫常数阶。

2、空间算法的线性阶(递归算法)

在这里插入图片描述
如上图,这是一个递归算法(计算从n + (n-1) + (n-2) + … + 2 + 1的和)
每当执行一次该函数就会为tmp分配一个临时存储空间,所以f(n) = 1*(n-1+1) = n,函数是受n影响的所以空间复杂度记为O(n)。

3、二分查找分析

在这里插入图片描述

方法一(迭代法)

	/// <summary>/// 二分查找/// </summary>/// <param name="arr">查找数组</param>/// <param name="len">数组长度</param>/// <param name="num">查找项</param>/// <returns></returns>int BinarySearch(int[] arr,int len,int num){int left = 0;int right = len - 1;int mid;while (left <= right){mid = (left + right) / 2;if (arr[mid] > num)right = mid - 1;else if (arr[mid] < num)left = mid + 1;elsereturn mid;}return -1;}

时间复杂度:
left、right、mid运算次数
f(n1) = 1 + 1 + 1 = 3
我们将While循环中的运算作为一个整体看待,每次都是折半运算次数
f(n2) = log2^n
总运行次数
f(all) = f(n1)+f(n2) = 3 + log2 ^ n
时间复杂度记为:O(log2^n)


空间复杂度:
算法中left、right、mid只创建的次数
s(n) = 1 + 1 + 1 = 3
空间复杂度记为:O(1)

方法二(递归法)

 /// <summary>/// 二分查找(递归法)/// </summary>/// <param name="arr"></param>/// <param name="left"></param>/// <param name="right"></param>/// <param name="num"></param>/// <returns></returns>int BinarySearchRecursion(int[] arr,int left,int right,int num){int mid = (left + right) / 2;if (left <= right){if (arr[mid] > num) {right = mid - 1;return BinarySearchRecursion(arr,left,right,num);}else if (arr[mid] < num){left = mid + 1;return BinarySearchRecursion(arr,left,right,num);}elsereturn mid;}else{return -1;}}

时间复杂度:
运行次数 f(n) = log2 ^ n
时间复杂度记为:O(log2^n)


空间复杂度:
因为整个算法中mid只创建的次数
s(n) = log2 ^ n
空间复杂度记为:O(log2 ^ n)


4、斐波那契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……
这个数列从第3项开始,每一项都等于前两项之和。

如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2)

显然这是一个线性的递推数列。
通项公式 :
在这里插入图片描述
上面就是斐波那契数列的递推公式,这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618
在这里插入图片描述
递推是公式是求解斐波那契数列的一个方法,我们当然也可以用计算机编写程序来求解。

方法一(迭代法)

  /// <summary>/// 斐波那契(迭代法)/// </summary>/// <param name="n"></param>/// <returns></returns>int Fibonacci(int n){if (n <= 0)return -1;if (n == 1 || n == 2)return 1;else{int num = 0;int a = 1;int b = 1;while (n - 2 > 0){num = a + b;a = b;b = num;n--;}return num;}}

时间复杂度:
while以外的算法语句都忽略不计(不随n的变化而变化)
while算法语句所有语句
f(n) = 4 *(n - 2) = 4n - 8
时间复杂度记为:O(n)


空间复杂度:
算法中num、a、b只创建1次
s(n) = 1 + 1 + 1 = 3
空间复杂度记为:O(1)


方法二(递归法)

/// <summary>/// 斐波那契(递归法)/// </summary>/// <param name="n"></param>/// <returns></returns>int FibonacciRecursion(int n){if (n <= 0)return -1;if (n == 1 || n == 2)return 1;return FibonacciRecursion(n - 1) + FibonacciRecursion(n - 2);}

时间复杂度:
递归调用的形参有两个n - 1 和 n - 2
时间复杂度记为:O(2^n)


空间复杂度:
递归的空间复杂度 =(n + 1)* 调用的深度
空间复杂度记为:O(n)(这里可以简单的根据二叉树的层来进行计算)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/305820.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

干货!一文详解车间管理的五大基本方法

车间管理是制造型企业生产过程中的重要环节&#xff0c;它直接影响着企业的生产效率、成本控制、产品质量以及员工的士气与工作效率。优秀的车间管理不仅能够提升产品的质量和生产力&#xff0c;还能降低运营成本&#xff0c;从而在激烈的市场竞争中为企业赢得优势。 为了帮助…

Rhinos各版本安装指南

下载链接 https://pan.baidu.com/s/1L5qeUPMW32d7zR-GlVVZIw?pwd0531 温馨提示&#xff1a;若您下载的安装包与该安装步骤不同&#xff0c;说明您使用的是之前被淘汰的安装包&#xff0c;请通过该页面的下载链接重新下载。 1.鼠标右击【Rhino8.1(64bit)】压缩包&#xff08…

Vue(一):Vue 入门与 Vue 指令

Vue 01. Vue 快速上手 1.1 Vue 的基本概念 用于 构建用户界面 的 渐进性 框架 构建用户界面&#xff1a;基于数据去渲染用户看到的界面渐进式&#xff1a;不需要学习全部的语法就能完成一些功能&#xff0c;学习是循序渐进的框架&#xff1a;一套完整的项目解决方案&#x…

Spring AOP—深入动态代理 万字详解(通俗易懂)

目录 一、前言 二、动态代理快速入门 1.为什么需要动态代理&#xff1f; : 2.动态代理使用案例&#xff1a; 3.动态代理的灵活性 : 三、深入动态代理 1.需求 : 2.实现 : 2.1 接口和实现类 2.2 提供代理对象的类 2.3 测试类 3.引出AOP : 四、总结 一、前言 第四节内容&…

设备不锈钢二维码标识牌

随着科技的不断发展&#xff0c;二维码已经应用于身边的各个领域。特别是在建筑施工、工业制造、设备管理等领域被广泛应用。 不锈钢二维码的优势。首先&#xff0c;不锈钢材质具有高度耐腐蚀、抗压和耐磨损的特点&#xff0c;可以适应各种极端环境。其次&#xff0c;不锈钢二…

mysql保姆安装教程

一.下载install文件 1.进入Mysql官网&#xff0c;点击下载 2.选择MySQL Installer for Windows 3.推荐选择第二个安装包 4.不登陆&#xff0c;开始下载 5.等待下载完成 二.安装前的配置 通过电脑“设置”&#xff0c;检查电脑是否包含中文名&#xff0c;如果包含请重命名 …

Python中JSON模块的使用

1 JSON简介 JSON是JavaScript Object Notation即Javascript对象简谱的缩写。JSON是一种轻量级的数据交换格式&#xff0c;JSON数据是由键值对组成的结构&#xff0c;与Python中的字典类似&#xff0c;由尖括号包围的键值对组成&#xff0c;键和值的类型可以是字符串、数字、布…

drf知识-08

Django之了解DRF框架 # 介绍&#xff1a;DRF全称 django rest framework # 背景&#xff1a; 在序列化与反序列化时&#xff0c;虽然操作的数据不尽相同&#xff0c;但是执行的过程却是相似的&#xff0c;也就是说这部分代码是可以复用简化编写的 增&#xff1a;校验请…

电子学会C/C++编程等级考试2023年03月(七级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:走出迷宫 当你站在一个迷宫里的时候,往往会被错综复杂的道路弄得失去方向感,如果你能得到迷宫地图,事情就会变得非常简单。 假设你已经得到了一个n*m的迷宫的图纸,请你找出从起点到出口的最短路。 时间限制:1000 内存限制…

边缘检测——PidiNet网络训练自己数据集并优化推理测试(详细图文教程)

PiDiNet 是一种用于边缘检测的算法&#xff0c;它提出了一种简单、轻量级但有效的架构。PiDiNet 采用了新 颖的像素差卷积&#xff0c;将传统的边缘检测算子集成到现代 CNN 中流行的卷积运算中&#xff0c;以增强任务性能。 在 BSDS500、NYUD 和 Multicue 上进行了大量的实验…

蓝桥杯嵌入式ADC

1.ADC原理图 2.CubeMX配置 3.ADC相关代码

3D展2D数学原理

今年早些时候&#xff0c;我为 MAKE 杂志写了一篇教程&#xff0c;介绍如何制作视频游戏角色的毛绒动物。 该技术采用给定的角色 3D 模型及其纹理&#xff0c;并以编程方式生成缝纫图案。 虽然我已经编写了一般摘要并将源代码上传到 GitHub&#xff0c;但我在这里编写了对使这一…