Java技术栈 —— Redis的雪崩、穿透与击穿

Java技术栈 —— Redis的雪崩、穿透与击穿

  • 〇、实验的先导条件(Nginx+Jmeter)
  • 一、Redis缓存雪崩、缓存穿透、缓存击穿
    • 1.1 雪崩
    • 1.2 穿透
    • 1.3 击穿
  • 二、Redis应用场景——高并发
    • 2.1 单机部署的高并发问题与解决(JVM级别锁)
    • 2.2 集群部署的高并发问题与解决(分布式锁)
      • 2.2.1 代码1(存在非原子操作与释放问题)
      • 2.2.2 代码2(finally块中,存在释放其它线程锁的可能性)
      • 2.2.3 代码3(redisson)
        • 2.2.3.1 Java中嵌入Lua脚本
      • 2.2.4 对代码3的性能优化、redis主从架构锁失效问题的解决方案
        • 2.2.4.1 性能优化的解决(分段锁,重要)
        • 2.2.4.2 主从架构锁失效问题的解决
            • 2.2.4.2.1 zookeeper
            • 2.2.4.2.2 redis的RedLock

〇、实验的先导条件(Nginx+Jmeter)

首先你需要掌握Nginx负载均衡与Jmeter压测工具,搭建过程与使用方式,见参考文章。

参考文章或视频链接
[1] 《Java技术栈 —— Nginx的使用》
[2] 2 ways to install Apache JMeter on Ubuntu 22.04 LTS Linux

一、Redis缓存雪崩、缓存穿透、缓存击穿

关于雪崩、穿透与击穿的原理,可以先看本节的参考文章[1],代码以后再写到文章中。

1.1 雪崩

1.2 穿透

1.3 击穿

一、参考文章或视频链接
[1] 【什么是Redis缓存雪崩、穿透、击穿,十分钟给你讲的明明白白】- bilibili

二、Redis应用场景——高并发

高并发导致的问题,本质就是资源争抢。 在操作系统中,这类问题的雏形有哲学家用餐问题、进程争夺计算资源,相关解决机制有信号量机制,所以道理都是相通的,高并发在计算机领域并不是什么新鲜事,只是落地到应用场景,会有一些其它考量。就像古代兵符印信,或是倚天屠龙记中说的“武林至尊,宝刀屠龙,号令天下,莫敢不从!倚天不出,谁与争锋?”,听谁的问题的解决方法啊,就是象征物在谁手上就听谁的,包括抢职位争权力,也可以理解为一种并发,谁坐到了那个位置,才有号令的权力,但是权力是致命毒药,要小心哦!

首先导入jedis依赖,从而可以用java程序包操纵redis,以下是完整依赖。

	<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-jdbc</artifactId></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.28</version></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>3.0.3</version></dependency><!--实现分布式锁redisson--><dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.6.5</version></dependency>
<!-- 也可以手动引入Jedis,不用SpringBoot提供的spring-boot-starter-data-redis--><dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>5.1.0</version></dependency><!--如果你导入了下面的SpringBoot父依赖,会自带Jedis,不过版本不一定最新而已,并且有些-->
<!--	<parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.2.1</version><relativePath/> </parent>用SpringBoot提供的Jedis版本<dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId></dependency> -->

然后,我们开始复现高并发问题。首先是假设你已经搭建了一个简单的SpringBoot项目架构,并且相关的Nginx配置也已配置好,可以看 参考文章[5] 《Java技术栈 —— Nginx的使用》第3.1节,那正是我为本文而写,项目demo搭好了,port号也初步定为9998

二、参考文章或视频链接
[1] Java guide(Jedis) - Redis Offical Website
[2] Intro to Jedis – the Java Redis Client Library
[3] Redis可视化工具 RedisInsight | The best Redis GUI
[4] 示例代码来源,图灵诸葛老师,讲的确实很好: 【这可能是目前讲的最好的Redis高并发架构教程,堪称Redis架构实战的天花板!】
[5] 《Java技术栈 —— Nginx的使用》

2.1 单机部署的高并发问题与解决(JVM级别锁)

(1)先在redis中设置缓存好一个键值对,键的名字为store,这是我们要高并发的对象。

$ redis-cli
127.0.0.1:6379>	SETNX store 2000
127.0.0.1:6379>	get store
"2000"

(2)写一段操作redis获取store值的代码,完整项目代码最后会附上开源地址。

@RestController
public class demoController {public static int count = 0;@RequestMapping("deduct_stock_then_get_stock")public Integer deductStock(){Jedis jedis = new Jedis("127.0.0.1", 6379);int currentStock = Integer.parseInt(jedis.get("stock"));if (currentStock > 0){currentStock--;jedis.set("stock", String.valueOf(currentStock));System.out.println("扣减成功,剩余库存"+currentStock);}else{System.out.println("扣减失败,库存不足");}return currentStock;}
}

启动项目并访问http://127.0.0.1:9998/deduct_stock_then_get_stock,让我们先看看效果,慢慢迭代,好的,现在浏览器上已经返回了当前库存数量,显示是199不要在意,这个数字随时可以在redis中修改。

然后我们用Jmeter,模拟多个用户同时访问 http://127.0.0.1:9998/deduct_stock_then_get_stock,上面这段Java代码会出什么问题呢?简单来说,就是会出现超卖问题。按下面的过程配置,并点击绿色的启动箭头在这里插入图片描述,就开启了压测。

在这里插入图片描述在这里插入图片描述在这里插入图片描述
这是控制台输出的结果,果然,出现了超卖问题,这说明会有多个用户都看到了相同的1999库存,很明显是有问题的,这是因为多个用户同时进入了相同段代码的执行过程,并且都拿到了一个currentStock变量作为副本,而这个变量在获取的时候出现了值相同的情况。

@RestController
public class demoController { //方法(2)以函数为单位上锁,写成 public synchronized Integer deductStock(){@RequestMapping("deduct_stock_then_get_stock")public Integer deductStock(){Jedis jedis = new Jedis("127.0.0.1", 6379);synchronized (this){ //方法(1)以对象为单位上锁int currentStock = Integer.parseInt(jedis.get("stock")); //上一段未加synchronized的代码,问题出在这里,都获取到了一样的值,那么再进行currentStock--,就是1999了if (currentStock > 0){currentStock--;jedis.set("stock", String.valueOf(currentStock));System.out.println("扣减成功,剩余库存"+currentStock);}else{System.out.println("扣减失败,库存不足");}return currentStock;}}}

只加了一个锁,问题解决,那么到目前为止,单机部署的高并发问题,可以算解决了,如果集群部署的话,上面这段代码还有用吗?

2.2 集群部署的高并发问题与解决(分布式锁)

根据参考视频[4]所说,上面的代码也只是解决了单机部署下的高并发问题,如果是集群部署,启动了多个服务分别部署在不同机器上呢?这个时候Nginx会分发请求到不同服务实例上,还会出现上面的超卖现象吗?答案是会的,这相当于线程A在服务A上执行扣库存,线程B在服务B上执行扣库存,这两个线程压根不归同一个JVM虚拟机进程管,是没办法用上面的加synchronized关键字去限制的,具体可以看视频讲解。但是,只要思想不滑坡,办法总比困难多,请看。PS:你能想象,其实12306是全世界最能抗高并发的软件吗?总有些东西在微不足道的角落里熠熠生辉,独自发热。
还是刚刚那段,在单机部署上解决了高并发问题的代码,我们来多启动一个服务,只是端口不同。

由于在参考文章[5]中,我已经配置了Nginx,所以我们的Jmeter测试地址,应该改为http://127.0.0.1:8011/deduct_stock_then_get_stock,看下面的两张截图,和视频[5]里说的一样,确实在集群部署时会出现超卖问题。

下面是加上分布式锁的解决方法, 但是仍然存在问题。

2.2.1 代码1(存在非原子操作与释放问题)

@RestController
public class demoController {@RequestMapping("deduct_stock_then_get_stock")public Integer deductStock(){String lockKey = "product_100";Jedis jedis = new Jedis("127.0.0.1", 6379);long result = jedis.setnx(lockKey,"xxx"); // 获取分布式锁if(result == 0){System.out.println("争抢分布式锁失败"); /*注意,这里实际使用会有问题,不应该return,只是作为示例争抢分布式锁失败的话也应该程门立雪,三顾茅庐,不可半途而返,半途而返会导致许多业务请求被扼杀*/ return 500;                          }//*****重要思维*****//业务逻辑,可能出异常,导致分布式锁无法释放,永远要考虑系统的业务逻辑被某种不可抗力因素停止,不管是运维还是什么,程序要具备健壮性。int currentStock = Integer.parseInt(jedis.get("stock"));if (currentStock > 0) {currentStock--;jedis.set("stock", String.valueOf(currentStock));System.out.println("扣减成功,剩余库存" + currentStock);} else {System.out.println("扣减失败,库存不足");}jedis.del(lockKey);  //释放分布式锁return currentStock;}}

2.2.2 代码2(finally块中,存在释放其它线程锁的可能性)

下面的代码对上面的代码做了两处改进:
(1)将获取与设置超时时间这两步,组合成原子操作,不可分离。
(2)增加clientID,保证释放的是自己加的锁,但在释放仍旧可能存在问题,视频中提到用redisson进行解决,见 redisson - github wiki,redisson与jedis区别在于,jedis只是提供一些原生命令的实现,redisson可以提供分布式锁的实现能力。

@RequestMapping("deduct_stock_then_get_stock")
public Integer deductStock(){ //集群版//(1)获得分布式锁String lockKey = "product_100";Jedis jedis = new Jedis("127.0.0.1", 6379);String clientID = UUID.randomUUID().toString(); //唯一ID,加锁人的身份//        String result = jedis.setex(lockKey, 10, clientID); //该命令是原子命令,将获取与设置超时时间这两步,组合成原子操作,不可分离,但还是存在问题,如业务逻辑执行较慢,锁已经超时释放了业务逻辑还没执行完,又导致了并发Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, clientID, 10, TimeUnit.SECONDS);  //该命令是原子命令,将获取与设置超时时间这两步,组合成原子操作,不可分离,但还是存在问题,如业务逻辑执行较慢,锁已经超时释放了业务逻辑还没执行完,又导致了并发stringRedisTemplate.opsForValue().get(lockKey);if(result == Boolean.FALSE){System.out.println("争抢分布式锁失败");  // 分布式锁争抢失败应该等待,而不应该直接returnreturn 500;}try{//*****重要思维*****//(2)执行业务逻辑,可能出异常,导致分布式锁无法释放,永远要考虑系统的业务逻辑被某种不可抗力因素停止,不管是运维还是什么,要具备健壮性。//此处可能存在的异常有:// (2.1)业务逻辑执行失败,但finally可以正常释放分布式锁// (2.2)应用被重启,连finally都无法执行,那么就需要令分布式锁自动过期int currentStock = Integer.parseInt(jedis.get("stock"));if (currentStock > 0) {currentStock--;jedis.set("stock", String.valueOf(currentStock));System.out.println("扣减成功,剩余库存" + currentStock);} else {System.out.println("扣减失败,库存不足");}return currentStock;}finally{//(3)出异常时释放分布式锁,这里释放分布式锁可能存在问题if (clientID.equals(jedis.get(lockKey))){//自己加的锁才能释放,中间还可能存在执行时间的间隔,开一个分线程,将分布式锁加时,检测这把分布式锁还是否加载在该主线程中,加时到直到业务逻辑执行完成为止jedis.del(lockKey);}}}

2.2.3 代码3(redisson)

@RequestMapping("deduct_stock_then_get_stock_cluster_redisson")
public Integer deductStock3(){ //集群+redisson版//(1)获得分布式锁String lockKey = "product_100";Jedis jedis = new Jedis("127.0.0.1", 6379);RLock redissonLock = redisson.getLock(lockKey); //获取RLock对象try{redissonLock.lock(); //(2)上锁,底层调用redis命令时用到了lua脚本//(3)业务逻辑int currentStock = Integer.parseInt(jedis.get("stock"));if (currentStock > 0) {currentStock--;jedis.set("stock", String.valueOf(currentStock));System.out.println("扣减成功,剩余库存" + currentStock);} else {System.out.println("扣减失败,库存不足");}return currentStock;}finally{//(4)释放锁redissonLock.unlock();}
}

redisson是一种Redis Java client,上述redisson的使用方法,也是大厂在生产环境会用到的,但上面的代码还有两个问题:
(1)性能问题,虽然没有超卖,但会导致系统性能问题,需要开始性能优化。
(2)redis主从架构下,锁失效问题。比如Master同步给Slave分布式锁时,Master正好挂掉,然后重新选举的Master正好没有同步到这把锁,就失效了。

2.2.3 参考文章或视频链接
[1] 1. Overview of Redisson - GitHub
2.2.3.1 Java中嵌入Lua脚本

什么是Lua脚本?我第一次听说Lua,是在敖丙解说B站出事那次,最后定位到一段Lua写的gcd()代码,久闻大名却未上手实操过。请看本节参考文章[1]。

2.2.3.1 参考文章或视频链接
[1] Lua:about - Offical Website

2.2.4 对代码3的性能优化、redis主从架构锁失效问题的解决方案

2.2.4.1 性能优化的解决(分段锁,重要)

先了解下并发编程集合类ConcurrentHashMap,这是一个高并发的Java集合类且线程安全,其保证线程安全的原理是,使用分段锁。受此启发,性能优化也可以用分段加锁,每个线程去不同的段位请求锁即可。

2.2.4.1 参考文章或视频链接
[1] 《详解ConcurrentHashMap》- CSDN
2.2.4.2 主从架构锁失效问题的解决

CAP原则:zookeeper是CP架构,重在维持数据一致性;redis是AP架构,重在可用性。

2.2.4.2.1 zookeeper

使用zookeeper,zookeeper解决主从架构锁失效问题更合适,但会牺牲一点性能。

2.2.4.2.1 参考文章或视频链接
[1] What is Apache ZooKeeper?
[2] Welcome to Apache ZooKeeper
[3] 《2.0 Zookeeper 安装配置》- 菜鸟
[4] 《zookeeper快速入门一:zookeeper安装与启动》
2.2.4.2.2 redis的RedLock

要超过半数redis节点加锁成功才算成功,这样的原理又回到了zookeeper,还是会损失加锁的性能,所以RedLock实现的是否完善依旧存在争议。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/305913.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简述Redis备份策略以及对应的实现机制

引言 Redis作为高性能的内存数据库&#xff0c;数据的安全性至关重要。一旦数据丢失&#xff0c;可能会对业务造成重大影响。因此&#xff0c;备份Redis数据是每个Redis使用者都必须考虑的问题。本文将介绍Redis的备份策略以及对应的实现机制。 一、备份策略 1.1 定期备份 …

【零基础入门VUE】VueJS - 实例

✍面向读者&#xff1a;所有人 ✍所属专栏&#xff1a;零基础入门VUE专栏https://blog.csdn.net/arthas777/category_12537076.html 目录 句法 vue_instance.js 输出 例子 输出 实施例1 实施例2 例子 例子 要开始使用 VueJS&#xff0c;我们需要创建 Vue 实例&#xf…

神经网络常用模型总结

本文目录&#xff1a; 【一】目标检测中IOU的相关概念与计算【二】目标检测中NMS的相关概念与计算【三】One-stage目标检测与Two-stage目标检测的区别&#xff1f;【四】哪些方法可以提升小目标检测的效果&#xff1f;【五】ResNet模型的特点以及解决的问题&#xff1f;【六】R…

【C语言】数据结构——排序(一)

&#x1f497;个人主页&#x1f497; ⭐个人专栏——数据结构学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 导读&#xff1a;数组打印与交换1. 插入排序1.1 直接插入排序1.1.1 基本思想1.1.2 实现代码1.1.3 图解 1.2 希尔排序1.2.1…

刺猬目标检测数据集VOC格式500张

刺猬是一种可爱的小型哺乳动物&#xff0c;被广泛分布在欧洲、亚洲、非洲和新西兰等地的草地、森林、灌木丛以及城市郊区等地方。刺猬的身体被短而密的刺毛所覆盖&#xff0c;这些刺毛是其最具特征性的外观特征&#xff0c;也是为了自我保护而设计的武器。 刺猬主要以昆虫、蠕…

手机/平板实现电脑第三屏-记录极简

软件&#xff1a; 手机 平板 : moonlight 电脑&#xff1a; 1 KtzeAbyss/Easy-Virtual-Display 2 Parsec Virtual Display Driver https://builds.parsec.app/vdd/parsec-vdd-0.38.0.0.exe 3 LizardByte/Sunshine: Self-hosted game stream host for Moonlight. (gith…

鸿蒙原生应用再添新丁!搜狐集团、航旅纵横入局鸿蒙

鸿蒙原生应用再添新丁&#xff01;搜狐集团、航旅纵横入局鸿蒙 来自 HarmonyOS 微博12月28日消息&#xff0c;搜狐集团宣布与华为达成全面合作&#xff01;搜狐新闻近期将完成#鸿蒙原生应用#核心功能版本&#xff0c;搜狐视频也启动了#鸿蒙原生应用#开发&#xff01;这不仅是一…

Grafana Loki 组件介绍

Loki 日志系统由以下3个部分组成&#xff1a; Loki是主服务器&#xff0c;负责存储日志和处理查询。Promtail是专为loki定制的代理&#xff0c;负责收集日志并将其发送给 loki 。Grafana用于 UI展示。 Distributor Distributor 是客户端连接的组件&#xff0c;用于收集日志…

学习STM32获取相关资料的官方网站

ARM公司官网 Building the Future of Computing – ArmTogether with its vast ecosystem, Arm technology is changing the world again, building the future of computing and bringing ideas to life.https://www.arm.com/STM32单片机是ARM公司开发的基于Cortex-M架构的内…

[BUG] Hadoop-3.3.4集群yarn管理页面子队列不显示任务

1.问题描述 使用yarn调度任务时&#xff0c;在CapacityScheduler页面上单击叶队列&#xff08;或子队列&#xff09;时&#xff0c;不会显示应用程序任务信息&#xff0c;root队列可以显示任务。此外&#xff0c;FairScheduler页面是正常的。 No matching records found2.原…

Python入门-字符串Str

字符串 字符串 是Python中的 不可变 数据类型 1.字符串相关处理方法 大小写转换 # 大小写转换 s1HelloWorld new_s2s1.lower() print(s1,new_s2)new_s3s1.upper() print(new_s3)结果&#xff1a; D:\Python_Home\venv\Scripts\python.exe D:\Python_Home\chap6\示例6-1字符…

西北大学844计算机类考研-25级初试高分总攻略

西北大学844计算机类考研-25级初试高分攻略 个人介绍 ​ 本人是西北大学22级软件工程研究生&#xff0c;考研专业课129分&#xff0c;过去一年里在各大辅导机构任职&#xff0c;辅导考研学生专业课844&#xff0c;辅导总时长达400小时&#xff0c;辅导学生超过20余人&#xf…