yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)

yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)_yolov8训练自己的数据集-CSDN博客在前几天,我们使用yolov8进行了部署,并在目标检测方向上进行自己数据集的训练与测试,今天我们训练下yolov8的图像分类,看看效果如何,同时使用resnet50也训练一个分类模型,看看哪个效果好!

图像分类是指将输入的图像自动分类为不同的类别。它是计算机视觉领域的一个重要应用,可以用于人脸识别、物体识别、场景分类等任务。

通常情况下,图像分类的流程如下:

  1. 收集和准备数据集:收集与任务相关的图像数据,并将其打上标签。
  2. 定义模型:选择一种适合于你的任务的深度学习模型,例如卷积神经网络(CNN)。
  3. 训练模型:使用收集到的数据集对模型进行训练,通过反向传播算法来更新模型参数,使其可以根据输入图像进行正确的分类。
  4. 评估模型性能:使用测试集对已经训练好的模型进行评估,比较模型预测结果与真实标签之间的差异,从而评估模型的性能。
  5. 使用模型进行预测:使用已经训练好的模型对新的图像进行分类预测。

在实际应用中,可以使用各种深度学习框架(例如 TensorFlow、PyTorch、Keras 等)来构建图像分类模型,并使用各种数据增强技术(例如旋转、缩放、裁剪等)来增加数据集的多样性和数量。

如果你想学习如何使用深度学习框架来构建图像分类模型,可以参考一些在线教程、书籍或者 MOOC。

一、yolov8图像分类

1.模型选型

下载yolov8分类模型。

分别使用模型进行测试:

yolov8n-cls效果:

yolov8m-cls效果:

总结:n效果不咋地,还是得使用m进行后续训练工作。 

2.数据集准备

皮肤癌检测_数据集-飞桨AI Studio星河社区

同目标检测,还是放在datasets下。

直接改成这个,省去分数据集操作。 

 3.训练

yolo classify train data=./datasets/skin-cancer-detection model=yolov8n-cls.pt epochs=100

测试:

yolo classify predict model=runs/classify/train4/weights/best.pt source='./datasets/skin-cancer-detection/train/nevus'

  

label: 

 pred:

总结:数据集比较小,yolov8效果不太好。

、resnet50图像分类

Resnet50 网络中包含了 49 个卷积层、一个全连接层。如图下图所示,Resnet50网络结构可以分成七个部分,第一部分不包含残差块,主要对输入进行卷积、正则化、激活函数、最大池化的计算。第二、三、四、五部分结构都包含了残差块,图 中的绿色图块不会改变残差块的尺寸,只用于改变残差块的维度。在 Resnet50 网 络 结 构 中 , 残 差 块 都 有 三 层 卷 积 , 那 网 络 总 共 有1+3×(3+4+6+3)=49个卷积层,加上最后的全连接层总共是 50 层,这也是Resnet50 名称的由来。网络的输入为 224×224×3,经过前五部分的卷积计算,输出为 7×7×2048,池化层会将其转化成一个特征向量,最后分类器会对这个特征向量进行计算并输出类别概率。

运行train.py即可。

train.py

import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import timeimport numpy as np
import matplotlib.pyplot as plt
import os
from tqdm import tqdm# 一、建立数据集
# animals-6
#   --train
#       |--dog
#       |--cat
#       ...
#   --valid
#       |--dog
#       |--cat
#       ...
#   --test
#       |--dog
#       |--cat
#       ...
# 我的数据集中 train 中每个类别60张图片,valid 中每个类别 10 张图片,test 中每个类别几张到几十张不等,一共 6 个类别。# 二、数据增强
# 建好的数据集在输入网络之前先进行数据增强,包括随机 resize 裁剪到 256 x 256,随机旋转,随机水平翻转,中心裁剪到 224 x 224,转化成 Tensor,正规化等。
image_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),transforms.RandomRotation(degrees=15),transforms.RandomHorizontalFlip(),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),'valid': transforms.Compose([transforms.Resize(size=256),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
}# 三、加载数据
# torchvision.transforms包DataLoader是 Pytorch 重要的特性,它们使得数据增加和加载数据变得非常简单。
# 使用 DataLoader 加载数据的时候就会将之前定义的数据 transform 就会应用的数据上了。
dataset = 'skin-cancer-detection'
train_directory = './skin-cancer-detection/train'
valid_directory = './skin-cancer-detection/val'batch_size = 32
num_classes = 9 #分类种类数
print(train_directory)
data = {'train': datasets.ImageFolder(root=train_directory, transform=image_transforms['train']),'valid': datasets.ImageFolder(root=valid_directory, transform=image_transforms['valid'])
}
print("训练集图片类别及其对应编号(种类名:编号):",data['train'].class_to_idx)
print("测试集图片类别及其对应编号:",data['valid'].class_to_idx)train_data_size = len(data['train'])
valid_data_size = len(data['valid'])train_data = DataLoader(data['train'], batch_size=batch_size, shuffle=True, num_workers=0)
valid_data = DataLoader(data['valid'], batch_size=batch_size, shuffle=True, num_workers=0)print("训练集图片数量:",train_data_size, "测试集图片数量:",valid_data_size)# 四、迁移学习
# 这里使用ResNet-50的预训练模型。
#resnet50 = models.resnet50(pretrained=True)
resnet50 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)# 在PyTorch中加载模型时,所有参数的‘requires_grad’字段默认设置为true。这意味着对参数值的每一次更改都将被存储,以便在用于训练的反向传播图中使用。
# 这增加了内存需求。由于预训练的模型中的大多数参数已经训练好了,因此将requires_grad字段重置为false。
for param in resnet50.parameters():param.requires_grad = False# 为了适应自己的数据集,将ResNet-50的最后一层替换为,将原来最后一个全连接层的输入喂给一个有256个输出单元的线性层,接着再连接ReLU层和Dropout层,然后是256 x 6的线性层,输出为6通道的softmax层。
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(nn.Linear(fc_inputs, 256),nn.ReLU(),nn.Dropout(0.4),nn.Linear(256, num_classes),nn.LogSoftmax(dim=1)
)# 用GPU进行训练。
resnet50 = resnet50.to('cuda:0')# 定义损失函数和优化器。
loss_func = nn.NLLLoss()
optimizer = optim.Adam(resnet50.parameters())# 五、训练
def train_and_valid(model, loss_function, optimizer, epochs=25):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")history = []best_acc = 0.0best_epoch = 0for epoch in range(epochs):epoch_start = time.time()print("Epoch: {}/{}".format(epoch+1, epochs))model.train()train_loss = 0.0train_acc = 0.0valid_loss = 0.0valid_acc = 0.0for i, (inputs, labels) in enumerate(tqdm(train_data)):inputs = inputs.to(device)labels = labels.to(device)#因为这里梯度是累加的,所以每次记得清零optimizer.zero_grad()outputs = model(inputs)loss = loss_function(outputs, labels)print("标签值:",labels)print("输出值:",outputs)loss.backward()optimizer.step()train_loss += loss.item() * inputs.size(0)ret, predictions = torch.max(outputs.data, 1)correct_counts = predictions.eq(labels.data.view_as(predictions))acc = torch.mean(correct_counts.type(torch.FloatTensor))train_acc += acc.item() * inputs.size(0)with torch.no_grad():model.eval()for j, (inputs, labels) in enumerate(tqdm(valid_data)):inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)loss = loss_function(outputs, labels)valid_loss += loss.item() * inputs.size(0)ret, predictions = torch.max(outputs.data, 1)correct_counts = predictions.eq(labels.data.view_as(predictions))acc = torch.mean(correct_counts.type(torch.FloatTensor))valid_acc += acc.item() * inputs.size(0)avg_train_loss = train_loss/train_data_sizeavg_train_acc = train_acc/train_data_sizeavg_valid_loss = valid_loss/valid_data_sizeavg_valid_acc = valid_acc/valid_data_sizehistory.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])if best_acc < avg_valid_acc:best_acc = avg_valid_accbest_epoch = epoch + 1epoch_end = time.time()print("Epoch: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation: Loss: {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(epoch+1, avg_valid_loss, avg_train_acc*100, avg_valid_loss, avg_valid_acc*100, epoch_end-epoch_start))print("Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))torch.save(model, 'models/'+dataset+'_model_'+str(epoch+1)+'.pt')return model, historynum_epochs = 100 #训练周期数
trained_model, history = train_and_valid(resnet50, loss_func, optimizer, num_epochs)
torch.save(history, 'models/'+dataset+'_history.pt')history = np.array(history)
plt.plot(history[:, 0:2])
plt.legend(['Tr Loss', 'Val Loss'])
plt.xlabel('Epoch Number')
plt.ylabel('Loss')
plt.ylim(0, 1)
plt.savefig(dataset+'_loss_curve.png')
plt.show()plt.plot(history[:, 2:4])
plt.legend(['Tr Accuracy', 'Val Accuracy'])
plt.xlabel('Epoch Number')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.savefig(dataset+'_accuracy_curve.png')
plt.show()

测试:图片名改下即可。

import torch
from torchvision import  models, transforms
import torch.nn as nn
import cv2
classes = ["1","2","3","4","5","6","7","8","9"] #识别种类名称(顺序要与训练时的数据导入编号顺序对应,可以使用datasets.ImageFolder().class_to_idx来查看)transf = transforms.ToTensor()
device = torch.device('cuda:0')
num_classes = 2
model_path = "models/skin-cancer-detection_model_3.pt"
image_input = cv2.imread("ISIC_0000019.jpg")
image_input = transf(image_input)
image_input = torch.unsqueeze(image_input,dim=0).cuda()
#搭建模型
resnet50 = models.resnet50(pretrained=True)
for param in resnet50.parameters():param.requires_grad = Falsefc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(nn.Linear(fc_inputs, 256),nn.ReLU(),nn.Dropout(0.4),nn.Linear(256, num_classes),nn.LogSoftmax(dim=1)
)
resnet50 = torch.load(model_path)outputs = resnet50(image_input)
value,id =torch.max(outputs,1)
print(outputs,"\n","结果是:",classes[id])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/307281.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macos Jetbrains IDEA用户自定义vm配置信息存储路径, IDEA点击无反应 无法打开问题解决

Jetbrains Clion, IDEA 用户在应用里面修改了自定义的VM配置后的存储路径为 ~/Library/Application Support/JetBrains/xxx2023.3/xxx.vmoptions xxx为你安装的APP名称, 如 Clion .IntelliJIdea 这里的自定义配置如果配置有误就会直接导致JetBrains软件无法打开, 即 点击打开…

HBase 集群搭建

文章目录 安装前准备兼容性官方网址 集群搭建搭建 Hadoop 集群搭建 Zookeeper 集群解压缩安装配置文件高可用配置分发 HBase 文件 服务的启停启动顺序停止顺序 验证进程查看 Web 端页面 安装前准备 兼容性 1&#xff09;与 Zookeeper 的兼容性问题&#xff0c;越新越好&#…

Prometheus 14 点实践经验分享

这是 2017 年的 promcon 的分享&#xff0c;原文地址在这里&#xff0c;作者 Julius Volz&#xff0c;今天偶然看到&#xff0c;虽然已经过去 6 年&#xff0c;有些实践经验还是非常值得学习。做个意译&#xff0c;加入一些自己的理解&#xff0c;分享给大家。 埋点方面 1. 所…

Java创建线程执行任务的方法(一)

目录 1.继承Thread类 2.实现Runnab类 2.1实现Runnable类 2.2使用Lambda表达式 3.实现Callable类 3.1返回Integer类型数据 3.2返回String类型数据 3.3返回Object类型数据 4.匿名内部类 创建线程的方法&#xff1a;继承Thread类&#xff1b;实现Runnab类&#xff1b;匿名…

国内联合办公江湖风云录

国内的联合办公市场自诞生之时便注定不平凡。在全球化与互联网的双重推动下&#xff0c;这个市场以闪电般的速度蓄力并爆发&#xff0c;闻名于世。随着越来越多的创业者及中小企业的兴起&#xff0c;对于灵活、经济、有社群支持的办公环境的需求不断攀升。与此同时&#xff0c;…

移动机器人规划、控制算法初识

规划与控制PNC(PlanningandControl) 1 路径规划算法&#xff1a; 移动机器人路径规划算法总结_机器人运动轨迹算法-CSDN博客 2 控制算法&#xff1a; 机器人控制算法综述_机器人控制技术综述-CSDN博客 机器人控制算法简要概述_智能控制算法-CSDN博客 学习资源&#xff1a; …

FET3588-C核心板温宽升级,无惧高温与严寒

飞凌嵌入式基于RK3588系列处理器推出了商业级FET3588-C和工业级FET3588J-C两款国产高性能核心板&#xff0c;自上市后就有着不俗的市场反响和热度。为了满足更多客户在工业环境中的高可靠性要求&#xff0c;飞凌嵌入式为FET3588-C商业级核心板进行了温宽升级&#xff0c;温宽范…

c语言-位操作符练习题

文章目录 前言一、n&(n-1)的运用场景(n为整数)二、&1 和 >>的应用场景总结 前言 本篇文章介绍利用c语言的位操作符解决一些练习题&#xff0c;目的是掌握各个位操作符的使用和应用场景。 表1.1为c语言中的位操作符 操作符含义&按位与|按位或^按位异或~按位…

因数据侵权,纽约时报起诉OpenAI、微软

12月28日&#xff0c;金融时报消息&#xff0c;因为非法使用数百万篇新闻数据训练ChatGPT等生成式AI产品&#xff0c;《纽约时报》正在起诉OpenAI和微软。 这是第一家起诉生成式AI厂商的著名媒体。《纽约时报》没有公布具体数额&#xff0c;但希望获得数十亿美元的赔偿金。 O…

将H5封装为App:实现跨平台移动应用开发的新趋势

H5技术指的是HTML5、CSS3和JavaScript等一系列前端技术的综合应用。它具有跨平台、开发成本低、开发周期短等优势&#xff0c;可以快速实现丰富的界面和交互效果。而原生应用开发受限于操作系统的差异&#xff0c;需要分别开发不同平台的应用&#xff0c;这就增加了开发成本和工…

Python中使用SQLite数据库的方法2-2

3.3.2 创建表单及字段 通过“3.2 创建Cursor类的对象”中创建的Cursor类的对象cur创建表单及字段&#xff0c;代码如图5所示。 图5 创建表单及字段 从图5中可以看出&#xff0c;通过Cursor类的对象cur调用了Cursor类的execute()方法来执行SQL语句。该方法的参数即为要指定的S…

元旦送好礼:华为 WATCH 4 系列,开启智慧健康的新一年

戴上华为 WATCH 4 系列&#xff0c;开启智慧健康的新一年。功能强大和强劲续航的完美融合&#xff0c;实时消息抬腕即知&#xff0c;跌倒时自动弹出 SOS 紧急呼救&#xff0c;还支持一键启动微体检&#xff0c;全面打造健康生活&#xff01;