Hbase详解

Hbase

概念

base 是分布式、面向列的开源数据库(其实准确的说是面向列族)。HDFS 为 Hbase 提供可靠的底层数据存储服务,MapReduce 为 Hbase 提供高性能的计算能力,Zookeeper 为 Hbase 提供稳定服务和 Failover 机制,因此我们说 Hbase 是一个通过大量廉价的机器解决海量数据的高速存储和读取的分布式数据库解决方案。

列式存储

列方式所带来的重要好处之一就是,由于查询中的选择规则是通过列来定义的,因此整个数据库是自动索引化的。

image-20231229194242871

这里的列式存储其实说的是列族存储,Hbase 是根据列族来存储数据的。列族下面可以有非常多的列,列族在创建表的时候就必须指定。为了加深对 Hbase 列族的理解,下面是一个简单的关系型数据库的表和 Hbase 数据库的表:

image-20231229194220688

Hbase 核心概念
Column Family 列族

Column Family 又叫列族,Hbase 通过列族划分数据的存储,列族下面可以包含任意多的列,实现灵活的数据存取。Hbase 表的创建的时候就必须指定列族。就像关系型数据库创建的时候必须指定具体的列是一样的。Hbase 的列族不是越多越好,官方推荐的是列族最好小于或者等于 3。我们使用的场景一般是 1 个列族。

Rowkey(Rowkey 查询,Rowkey 范围扫描,全表扫描)

Rowkey 的概念和 mysql 中的主键是完全一样的,Hbase 使用 Rowkey 来唯一的区分某一行的数据。Hbase 只支持 3 中查询方式:基于 Rowkey 的单行查询,基于 Rowkey 的范围扫描,全表扫描。

Region 分区

ƒ Region:Region 的概念和关系型数据库的分区或者分片差不多。Hbase 会将一个大表的数据基于 Rowkey 的不同范围分配到不通的 Region 中,每个 Region 负责一定范围的数据访问和存储。这样即使是一张巨大的表,由于被切割到不通的 region,访问起来的时延也很低。

TimeStamp 多版本

ƒ TimeStamp 是实现 Hbase 多版本的关键。在 Hbase 中使用不同的 timestame 来标识相同rowkey 行对应的不通版本的数据。在写入数据的时候,如果用户没有指定对应的timestamp,Hbase 会自动添加一个 timestamp,timestamp 和服务器时间保持一致。在Hbase 中,相同 rowkey 的数据按照 timestamp 倒序排列。默认查询的是最新的版本,用户可同指定 timestamp 的值来读取旧版本的数据。

Hbase 核心架构

Hbase 是由 Client、Zookeeper、Master、HRegionServer、HDFS 等几个组建组成。

在这里插入图片描述

Client:

ƒ Client 包含了访问 Hbase 的接口,另外 Client 还维护了对应的 cache 来加速 Hbase 的访问,比如 cache 的.META.元数据的信息。

Zookeeper:

ƒ Hbase 通过 Zookeeper 来做 master 的高可用、RegionServer 的监控、元数据的入口以及集群配置的维护等工作。具体工作如下:

  1. 通过 Zoopkeeper 来保证集群中只有 1 个 master 在运行,如果 master 异常,会通过竞争机制产生新的 master 提供服务

  2. 通过 Zoopkeeper 来监控 RegionServer 的状态,当 RegionSevrer 有异常的时候,通过回调的形式通知 Master RegionServer 上下限的信息

  3. 通过 Zoopkeeper 存储元数据的统一入口地址。

Hmaster

ƒ master 节点的主要职责如下:

  1. 为 RegionServer 分配 Region
  2. 维护整个集群的负载均衡
  3. 维护集群的元数据信息发现失效的 Region,并将失效的 Region 分配到正常RegionServer 上当 RegionSever 失效的时候,协调对应 Hlog 的拆分
HregionServer

ƒ HregionServer 直接对接用户的读写请求,是真正的“干活”的节点。它的功能概括如下:

  1. 管理 master 为其分配的 Region

  2. 处理来自客户端的读写请求

  3. 负责和底层 HDFS 的交互,存储数据到 HDFS

  4. 负责 Region 变大以后的拆分

  5. 负责 Storefile 的合并工作

Region 寻址方式(通过 zookeeper .META)

第 1 步:Client 请求 ZK 获取.META.所在的 RegionServer 的地址。

第 2 步:Client 请求.META.所在的 RegionServer 获取访问数据所在的 RegionServer 地址,client 会将.META.的相关信息 cache 下来,以便下一次快速访问。

第 3 步:Client 请求数据所在的 RegionServer,获取所需要的数据。

image-20231229194550920

HDFS

ƒ HDFS 为 Hbase 提供最终的底层数据存储服务,同时为 Hbase 提供高可用(Hlog 存储在HDFS)的支持。

Hbase 的写逻辑
Hbase 的写入流程

在这里插入图片描述

从上图可以看出氛围 3 步骤:

获取 RegionServer

第 1 步:Client 获取数据写入的 Region 所在的 RegionServer

请求写 Hlog

第 2 步:请求写 Hlog, Hlog 存储在 HDFS,当 RegionServer 出现异常,需要使用 Hlog 来恢复数据。

请求写 MemStore

第 3 步:请求写 MemStore,只有当写 Hlog 和写 MemStore 都成功了才算请求写入完成。MemStore 后续会逐渐刷到 HDFS 中。

MemStore 刷盘

为了提高 Hbase 的写入性能,当写请求写入 MemStore 后,不会立即刷盘。而是会等到一定的时候进行刷盘的操作。具体是哪些场景会触发刷盘的操作呢?总结成如下的几个场景:

全局内存控制

  1. 这个全局的参数是控制内存整体的使用情况,当所有 memstore 占整个 heap 的最大比例的时候,会触发刷盘的操作。这个参数是

hbase.regionserver.global.memstore.upperLimit,默认为整个 heap 内存的 40%。但这并不意味着全局内存触发的刷盘操作会将所有的 MemStore 都进行输盘,而是通过另外一个参数 hbase.regionserver.global.memstore.lowerLimit 来控制,默认是整个heap 内存的 35%。当 flush 到所有 memstore 占整个 heap 内存的比率为 35%的时候,就停止刷盘。这么做主要是为了减少刷盘对业务带来的影响,实现平滑系统负载的目的。

MemStore 达到上限

  1. 当 MemStore 的大小达到 hbase.hregion.memstore.flush.size 大小的时候会触发刷盘,默认 128M 大小

RegionServer Hlog 数量达到上限

  1. 前面说到 Hlog 为了保证 Hbase 数据的一致性,那么如果 Hlog 太多的话,会导致故障恢复的时间太长,因此 Hbase 会对 Hlog 的最大个数做限制。当达到 Hlog 的最大个数的时候,会强制刷盘。这个参数是 hase.regionserver.max.logs,默认是 32 个。

手工触发

  1. 可以通过 hbase shell 或者 java api 手工触发 flush 的操作。

关闭 RegionServer 触发

  1. 在正常关闭 RegionServer 会触发刷盘的操作,全部数据刷盘后就不需要再使用 Hlog 恢复数据。

Region 使用 HLOG 恢复完数据后触发

  1. :当 RegionServer 出现故障的时候,其上面的 Region 会迁移到其他正常的RegionServer 上,在恢复完 Region 的数据后,会触发刷盘,当刷盘完成后才会提供给业务访问。
HBase vs Cassandra

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/308158.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Camera

1. 相关的API Android有三套关于摄像头的API(库),分别是Camera、Camera2和CameraX,其中Camera已废弃,在Android5.0以后推荐使用Camera2和CameraX,Camera2推出是用来替换Camera的,它拥有丰富的API可以为复杂的用例提供…

【Python篇】python库讲解(wordcloud | jieba)

文章目录 🍔jieba库🍔wordcloud库🌹解释 🍔jieba库 jieba库是一个流行的中文分词工具,它基于统计算法和词频字典,能够将连续的汉字序列切割成有意义的词语。下面是对jieba库的简要理论说明: 分…

扭蛋机小程序搭建:打造互联网“流量池”

随着互联网科技的发展,扭蛋机小程序成为了市场发展的重要力量。 扭蛋机市从日本发展流行起来的,玩法就是根据设置的概率,让玩家体验扭蛋机的乐趣。扭蛋机中有隐藏款和稀有款,为了获得稀有款商品,玩家便会进行扭蛋&…

PiflowX组件-ReadFromKafka

ReadFromKafka组件 组件说明 从kafka中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号分隔的Ka…

nodejs微信小程序+python+PHP的林业信息管理系统的设计与实现-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set问题解决方案

sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set问题解决方案 当我们使用sudo su切换权限时提示错误: sudo: /usr/bin/sudo must be owned by uid 0 and have the setuid bit set该错误出现原因:是因为/usr/bin/sudo的权限被…

软件测试面试笔记分享(含文档)

大家好,最近有不少小伙伴在后台留言,得准备年后面试了,又不知道从何下手!为了帮大家节约时间,特意准备了一份面试相关的资料,内容非常的全面,真的可以好好补一补,希望大家在都能拿到…

OpenHarmony之分布式软总线

分布式软总线是多设备终端的统一基座,为设备间的无缝互联提供了统一的分布式通信能力,能够快速发现并连接设备,高效地传输任务和数据。 分布式软总线实现近场设备间统一的分布式通信管理能力,提供不区分链路的设备间发现连接、组网…

oracle学习(5)

数据处理 SQL语言的类型: 1. 数据库中,称呼增删改查,为DML语句。(Data Manipulation Language 数据操纵语言),就是指代: insert、update、delete、select这四个操作。 2. DDL语句。(Data Definition Language 数据…

复数值神经网络可能是深度学习的未来

一、说明 复数这种东西,在人的头脑中似乎抽象、似乎复杂,然而,对于计算机来说,一点也不抽象,不复杂,那么,将复数概念推广到神经网络会是什么结果呢?本篇介绍国外的一些同行的尝试实践,请我们注意观察他们的进展。

C#多条件排序OrderBy、ThenBy

方法和效果 有多个排序条件,其实不用单独自己写排序方法的,C#内置了排序方法: 引用命名空间System.Linq 正向排序的方法:OrderBy首要条件;ThenBy次要条件,可以连续多个使用 同理,逆向排序对应…

电脑怎么检测手机配置信息

目录 摘要 引言 用户登录工具和连接设备 查看设备信息,电池信息 查看硬盘信息 硬件信息 查看 基带信息 销售信息 摘要 本文介绍了如何使用克魔助手工具在电脑上检测手机的配置信息。通过该工具,用户可以全面了解手机的硬件和操作系统信息&#xff…