【Pytorch】学习记录分享10——PyTorchTextCNN用于文本分类处理

【Pytorch】学习记录分享10——PyTorchTextCNN用于文本分类处理

      • 1. TextCNN用于文本分类
      • 2. 代码实现

1. TextCNN用于文本分类

具体流程:
在这里插入图片描述
在这里插入图片描述

2. 代码实现

# coding: UTF-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as npclass Config(object):"""配置参数"""def __init__(self, dataset, embedding):self.model_name = 'TextCNN'self.train_path = dataset + '/data/train.txt'                                # 训练集self.dev_path = dataset + '/data/dev.txt'                                    # 验证集self.test_path = dataset + '/data/test.txt'                                  # 测试集self.class_list = [x.strip() for x in open(dataset + '/data/class.txt').readlines()]                                # 类别名单self.vocab_path = dataset + '/data/vocab.pkl'                                # 词表self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'        # 模型训练结果self.log_path = dataset + '/log/' + self.model_nameself.embedding_pretrained = torch.tensor(np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\if embedding != 'random' else None                                       # 预训练词向量self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备self.dropout = 0.5                                              # 随机失活self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练self.num_classes = len(self.class_list)                         # 类别数self.n_vocab = 0                                                # 词表大小,在运行时赋值self.num_epochs = 20                                            # epoch数self.batch_size = 128                                           # mini-batch大小self.pad_size = 32                                              # 每句话处理成的长度(短填长切)self.learning_rate = 1e-3                                       # 学习率self.embed = self.embedding_pretrained.size(1)\if self.embedding_pretrained is not None else 300           # 字向量维度self.filter_sizes = (2, 3, 4)                                   # 卷积核尺寸self.num_filters = 256                                          # 卷积核数量(channels数)'''Convolutional Neural Networks for Sentence Classification'''class Model(nn.Module):def __init__(self, config):super(Model, self).__init__()if config.embedding_pretrained is not None:self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)else:self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)self.convs = nn.ModuleList([nn.Conv2d(1, config.num_filters, (k, config.embed)) for k in config.filter_sizes])self.dropout = nn.Dropout(config.dropout)self.fc = nn.Linear(config.num_filters * len(config.filter_sizes), config.num_classes)def conv_and_pool(self, x, conv):x = F.relu(conv(x)).squeeze(3)x = F.max_pool1d(x, x.size(2)).squeeze(2)return xdef forward(self, x):#print (x[0].shape)out = self.embedding(x[0])out = out.unsqueeze(1)out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)out = self.dropout(out)out = self.fc(out)return out

该代码对应上述的图像中的模块实现,CNN用于处理文本数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/309729.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

『番外篇六』SwiftUI 取得任意视图全局位置的三种方法

概览 在 SwiftUI 开发中,利用描述性代码我们可以很轻松的构建各种丰富多彩的视图。我们可以设置它们的大小、位置、颜色并应用不计其数的修改器。 但是,小伙伴们是否想过在 SwiftUI 中如何获取一个视图的全局位置坐标呢? 在本篇博文中,您将学到如下内容: 概览1. SwiftU…

云计算IaaS、PaaS和SaaS之

提供的服务来比较如下两图 示例图 示例图

ssrf之dict协议和file协议

1.dict协议 dict是什么协议呢? 定义:词典网络协议,在RFC 2009中进行描述。它的目标是超越Webster protocol,并允许客户端在使 用过程中访问更多字典。Dict服务器和客户机使用TCP端口2628。 官方介绍:http://dict.o…

Redis 快速搭建与使用

文章目录 1. Redis 特性1.1 多种数据类型支持1.2 功能完善1.3 高性能1.4 广泛的编程语言支持1.5 使用简单1.6 活跃性高/版本迭代快1.7 I/O 多路复用模型 2. Redis发展历程3. Redis 安装3.1 源码安装3.1.1 下载源码包3.1.2 解压安装包3.1.3 切换到 Redis 目录3.1.4 编译安装 3.2…

数字资产学习笔记

附:2023年数据资源入表白皮书下载: 关注WX公众号: commindtech77, 获得数据资产相关白皮书下载地址 1. 回复关键字:数据资源入表白皮书 下载 《2023数据资源入表白皮书》 2. 回复关键字:光大银行 下载 光…

计算机组成原理-总线概述

文章目录 总线简图总线的物理实现总览总线定义总线的特性总线的分类按数据格式分类串行总线并行总线 按总线功能分类注意系统总线的进一步分类 总线的结构单总线的机构双总线的结构三总线的结构四总线的结构 小结 总线简图 总线的物理实现 如果该为数据总线,那么当…

一文带你了解大模型的RAG(检索增强生成) | 概念理论介绍+ 代码实操(含源码)

针对大型语言模型效果不好的问题,之前人们主要关注大模型再训练、大模型微调、大模型的Prompt增强,但对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数…

设计模式——行为型模式

模板方法模式 行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。 行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间…

2023十大编程语言及未来展望

2023十大编程语言及未来展望 1. 2023年十大编程语言排行榜2. 十大编程语言未来展望PythonCCJavaC#JavaScriptPHPVisual BasicSQLAssembly language 1. 2023年十大编程语言排行榜 TIOBE排行榜是根据互联网上有经验的程序员、课程和第三方厂商的数量,并使用搜索引擎&a…

GBASE南大通用-GBase 8s数据库日志模式及切换

一、 GBase 8s数据库共有以下 4 种日志模式:无日志模式、缓冲日志模式、无缓冲日志模式、ANSI 模式。详细介绍如下: 1、无日志模式(Non logging): 采用无日志模式时,所有 DML 操作都不会被记录到日志中&…

day52 算法训练|动态规划part13

参考:代码随想录 300.最长递增子序列 1. dp[i]的定义 本题中,正确定义dp数组的含义十分重要。 dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度 为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时…

C语言课程设计参考题目

一、工资管理系统 需求分析 工资信息存放在文件中,提供文件的输入、输出等操作;要实现浏览功能,提供显示、排序操作;而查询功能要求实现查找操作;另外还应该提供键盘式选择菜单以实现功能选择。 2、总体设计 整个系统可…