【动态规划精选题目】3、简单多状态模型

此动态规划系列主要讲解大约10个系列【后续持续更新】

本篇讲解简单多状态模型中的9道经典题,会在讲解题目同时给出AC代码

目录

1、按摩师

2、力扣198:打家劫舍1

3、打家劫舍II

4、删除并获得点数

5、 粉刷房子

6、力扣309:买卖股票的最佳时机含冷冻期

7、 买卖股票的最佳时机含手续费

 8、买卖股票的最佳时机III

9、买卖股票的最佳时机IV


1、按摩师

示例分析: 

class Solution {
public:int massage(vector<int>& nums) {int n = nums.size();if (n == 0) return 0;//创建两个dp表f和gvector<int> f(n);//n个数据都会初始化为0auto g = f;//创建g表f[0] = nums[0]; //初始化for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[n - 1], g[n - 1]); }
};

借多状态dp的题说明一下,怎么判断是一维dp还是二维dp呢?

由状态表示决定的,如果一维数组能表示清楚,就用一维的,表示不清楚,就可以尝试增加维数,用二维的,有时候其实三维的也有,但是情况少。 


2、力扣198:打家劫舍1

 这道题跟上道题的按摩师的思路和代码基本一样

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();vector<int> f(n);auto g = f;f[0] = nums[0];for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[n - 1], g[n - 1]);}
};

3、打家劫舍II

这道题只是在上一道题的打家劫舍1中加了一个限制条件,即首尾也算相连,不能都偷窃,所以只需分类讨论下这个情况,再转换为打家劫舍1即可(下面的rob1表示的是可以偷的范围,也就是可以用打家劫舍1来求解的地方)

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max(nums[0] + rob1(nums, 2, n - 2), rob1(nums, 1, n - 1));}int rob1(vector<int>& nums, int left, int right){if (left > right) return 0;//处理边界条件int n = nums.size();//按理说开right-left+1个空间即可,但这里多开几个也没事vector<int> f(n);auto g = f;f[left] = nums[left];//初始化for (int i = left + 1; i <= right; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[right], g[right]);}
};

4、删除并获得点数

 动态规划的预处理思路:

其实上面的思想就是利用哈希表中的直接映射法,那么这种方法就要找nums数组中的最大值,但是题目中已经给出了nums数组中每个值的范围,故可以直接开空间大小为最大值。并且这种方法既做到了数据有序又做到了连续 

整体思路: 

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;//数组中的最大值为1万,多开1个防止越界问题//1、预处理int arr[N] = {0};for (const auto& x : nums) arr[x] += x;//2、利用打家劫舍思路求解该问题vector<int> f(N);auto g = f;//这里不用初始化了,因为f[0]=arr[0],可arr[0]本来就=0for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[N - 1], g[N - 1]);}
};

5、 粉刷房子

解释示例1和示例2:

也就是判断当前位置是第几个房子,只需看行即可,列是代表颜色的 

 总体思路:

下面说的位置可以理解为是一个房子

理解本题的虚拟节点: 

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n = costs.size();//得到的是行数,即现有的房子数vector<vector<int>> dp(n + 1, vector<int> (3));//多开一行给虚拟节点//从上到下遍历每个房子,算出每个房子对应不同颜色的价格for (int i = 1; i <= n; i++){//因为多开了一个虚拟节点,所以要加上cost[i-1][0],这里要用i-1才行dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i- 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i- 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i- 1][2];}return min(min(dp[n][0], dp[n][1]), dp[n][2]);}
};

6、力扣309:买卖股票的最佳时机含冷冻期

题目分析: 

如果是多状态,并且多状态之间可以相互转移的话 ,为了不忽略某种状态,我们可以画一个图,如下图,我们也称为这种图为状态机

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));//三个dp表dp[0][0] = -prices[0];//初始化 for (int i = 1; i < n; ++i){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}//最佳答案一定不会是dp[n - 1][0],所以最后不用考虑在内return max(dp[n - 1][1], dp[n - 1][2]);}
};

7、 买卖股票的最佳时机含手续费

 示例解释:

 箭头起始位置:前一天结束后的状态,箭头指向位置:当天结束状态

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<int> f(n);auto g = f;f[0] = -prices[0];//初始化:第0天结束后处于买入状态for (int i = 1; i < n; i++){f[i] = max(f[i- 1], g[i - 1] - prices[i]);g[i] = max(f[i - 1] + prices[i] - fee, g[i - 1]);}//最后一天手里还有股票,肯定就不是最优解,故不用考虑return g[n - 1];}
};

 当然,像之间那种开二维数组也可以,但是三种状态及以上才推荐开二维数组,下面这么写也可以


 8、买卖股票的最佳时机III

示例分析:

此题复杂在还要考虑交易的次数。

买入是指手里有股票的状态,卖出是指手里没股票,是一个可交易的状态。下图的线的含义,线的起点表示前一天结束后的状态,线表示当天的操作,箭头所指的表示当天结束后的状态 

 但是因为f和g表初始化的不一致,可又不想在循环外再初始化哪个特例,就用稍微修改状态转移方程的方法来便于统一的初始化

class Solution {
public:const int INF = 0x3f3f3f;//int最大值的一半int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f;//初始化f和g表的第一行的第一个元素f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);//天数不会越界,因为在这之前f和g表已经初始化了g[i][j] = g[i - 1][j];if (j - 1 >= 0){   //要么j-1交易次数存在,则考虑这种情况,//要么不存在,那么g[i][j]就直接=g[i-1][j]g[i][j] = max(g[i][j], f[i -1][j - 1] + prices[i]);}}}//找到g表最后一行的最大值int ret = 0;for (int i = 0; i < 3; i++)ret = max(g[n - 1][i], ret);return ret;         }
};

9、买卖股票的最佳时机IV

本题跟买卖股票的最佳时机III的分析思路基本一模一样,但是本题多了一个细节问题,即优化时间复杂度

 

 

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n / 2);//处理细节问题vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){//因为第一行已经初始化了,所以i从1开始for (int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0)g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i <= k; i++)ret = max(ret, g[n - 1][i]);return ret;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/309848.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何确定微服务项目中Spring Boot、Spring Cloud、Spring Cloud Alibaba三者之间的版本

文章目录 1. 版本说明2. 版本依赖关系(推荐使用)3. 用脚手架快速生成微服务的pom.xml 本文描述如何确定微服务项目的Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本。 1. 版本说明 我们知道Spring Boot、Spring Cloud、Spring Cloud Alibaba的版本选择一致性非常重要…

【华为数据之道学习笔记】7-5通过感知能力推进企业业务数字化

感知数据在华为信息架构中的位置 感知可以应用于广泛的物理世界和数字世界&#xff0c;感知范围可以从人、物、作业、地点扩展到复杂环境。成熟的用例倾向于以物和人为中心。而在企业中&#xff0c;只有将感知数据纳入整体的数据体系中&#xff0c;才能发挥感知数据的价值。 华…

代码随想录-刷题第四十二天

0-1背包理论基础 0-1背包问题介绍 0-1背包问题&#xff1a;有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品只能用一次&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 0-1背包问题可以使用回溯法进…

Java关键字(1)

Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字&#xff1a; public&#xff1a;表示公共的&#xff0c;可以被任何类访问。 private&#xff1a;表示私有的&#xff0c;只能被定义该关键字的类访问。 cl…

【STM32】STM32学习笔记-定时器定时中断 定时器外部时钟(14)

00. 目录 文章目录 00. 目录01. 定时器中断相关API1.1 TIM_InternalClockConfig1.2 TIM_TimeBaseInit1.3 TIM_TimeBaseInitTypeDef1.4 TIM_ClearFlag1.5 TIM_ITConfig1.6 TIM_Cmd1.7 中断服务函数1.8 TIM_ETRClockMode2Config 02. 定时器定时中断接线图03. 定时器定时中断示例0…

智能对话意图分析服务接口

机器人聊天&#xff0c;智能助手&#xff0c;内容生成&#xff0c;智能办公&#xff0c;智能辅助&#xff0c;智能搜索 一、接口介绍 通过接收用户提出的问题、输入的图片和文档等需求&#xff0c;准确识别其对话意图&#xff0c;并触发相应的回复。同时&#xff0c;整合了AP…

人员离岗识别摄像机

人员离岗识别摄像机是一种通过摄像技术来监测和识别工作场所员工离开工作岗位的设备。该摄像机能够准确识别员工的面部特征&#xff0c;并通过算法识别出员工是否离开了工作岗位&#xff0c;从而提高工作场所的管理效率。摄像机采用高清摄像头和人脸识别技术&#xff0c;能够精…

【办公技巧】怎么批量提取文件名到excel

Excel是大家经常用来制作表格的文件&#xff0c;比如输入文件名&#xff0c;如果有大量文件需要输入&#xff0c;用张贴复制或者手动输入的方式还是很费时间的&#xff0c;今天和大家分享如何批量提取文件名。 打开需要提取文件名的文件夹&#xff0c;选中所有文件&#xff0c…

解锁加密生态:用户钱包画像分析

作者&#xff1a;stellafootprint.network 随着加密资产的爆发式增长&#xff0c;对链上交易动态的分析变得至关重要。像 Footprint Analytics 这样的平台让投资者、开发者和企业可以通过用户钱包画像分析&#xff08;Wallet Profile)&#xff0c;去解锁加密生态。 用户钱包画…

HarmonyOS自己确认代码没问题 但通过不了ArkTS校验 利用 // @ts-ignore 跳过语法校验

有些时候 我们代码从外部获取的类型之类的 ArkTS校验比较严 之间就标红了 那么这种情况 我们如果确认他是没有问题的 在报错代码的前面加上// ts-ignore 就可以让他不做语法校验 但这个东西用的一定要慎重 至少要确保是没问题的

数字人私人定制

数字人是什么&#xff1f; 在回答这个问题之前&#xff0c;我们先回答另一个问题&#xff0c;人如何与人工智能交流&#xff1f;目前可以通过文字、语音、电脑屏幕、手机屏幕、平板、虚拟现实设备等和人工智能交流&#xff0c;为了得到更好的交流体验&#xff0c;人工智能必然…

关于蚁剑(AntSword)的溯源反制

中国蚁剑(AntSword) RCE漏洞 此漏洞在AntSword2.7.1版本上修复 &#xff0c;所以适用于AntSword2.7.1以下版本。 下面介绍被低版本蚁剑攻击后如何进行溯源反打 以物理机为攻击机&#xff0c;虚拟机kali模拟受害者&#xff0c;之后使用kali进行溯源反制 物理机内网ip地址&…