时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

目录

    • 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

Matlab实现贝叶斯变化点检测与时间序列分解
1.Matlab实现贝叶斯变化点检测与时间序列分解,完整源码和数据;
BEAST(突变、季节性和趋势的贝叶斯估计)是一种快速、通用的贝叶斯模型平均算法,用于将时间序列或1D序列数据分解为单个分量,如突变、趋势和周期性/季节性变化,如赵等人(2019)所述。BEAST可用于变化点检测(例如,断点、结构中断、状态变化或异常)、趋势分析、时间序列分解(例如,趋势与季节性)、时间序列分割和中断时间序列分析。
2.运行主程序main即可,其余为函数,无需运行,运行环境matlab2020及以上。
贝叶斯变化点检测和时间序列分解是两种在时间序列分析中常用的技术。

贝叶斯变化点检测(Bayesian Change Point Detection)是一种用于检测时间序列中突变点或结构变化的方法。它基于贝叶斯统计方法,通过考虑数据的先验分布和后验分布来确定变化点的位置和数量。该方法可以应用于多种类型的时间序列。
时间序列分解(Time Series Decomposition)是将时间序列分解为不同组成部分的过程。通常,一个时间序列可以分解为趋势(Trend)、季节性(Seasonality)和残差(Residual)三个部分。趋势表示时间序列的长期趋势变化,季节性表示时间序列在固定周期内的重复模式,而残差则表示无法由趋势和季节性解释的随机波动。时间序列分解可以帮助我们更好地理解时间序列的结构和特征,以及对序列进行预测和分析。

程序设计

  • 完整源码和数据获取方式:Matlab实现贝叶斯变化点检测与时间序列分解。
%% get values from keys. The last arg is the default value if the key is missing from varagin/KeyListstart           = GetValueByKey(KeyList, ValList, 'start',  []);deltat          = GetValueByKey(KeyList, ValList, 'deltat', []);time            = GetValueByKey(KeyList, ValList, 'time',   []);    period          = GetValueByKey(KeyList, ValList, 'period',  []); nsamples_per_period  = GetValueByKey(KeyList, ValList, 'freq',  []); season          = GetValueByKey(KeyList, ValList, 'season',        'harmonic'); sorder_minmax   = GetValueByKey(KeyList, ValList, 'sorder.minmax', [1,5]); scp_minmax      = GetValueByKey(KeyList, ValList, 'scp.minmax',    [0,10]); sseg_min        = GetValueByKey(KeyList, ValList, 'sseg.min',      []); sseg_leftmargin = GetValueByKey(KeyList, ValList, 'sseg.leftmargin',  []); sseg_rightmargin= GetValueByKey(KeyList, ValList, 'sseg.rightmargin', []); deseasonalize   = GetValueByKey(KeyList, ValList, 'deseasonalize', false); detrend         = GetValueByKey(KeyList, ValList, 'detrend', false); torder_minmax   = GetValueByKey(KeyList, ValList, 'torder.minmax', [0,1]); tcp_minmax      = GetValueByKey(KeyList, ValList, 'tcp.minmax',    [0,10]); tseg_min        = GetValueByKey(KeyList, ValList, 'tseg.min',      []);tseg_leftmargin = GetValueByKey(KeyList, ValList, 'tseg.leftmargin',  []); tseg_rightmargin= GetValueByKey(KeyList, ValList, 'tseg.rightmargin', []); precValue       = GetValueByKey(KeyList, ValList, 'precValue',       1.5); precPriorType   = GetValueByKey(KeyList, ValList, 'precPriorType',   'componentwise');    hasOutlierCmpnt = GetValueByKey(KeyList, ValList, 'hasOutlier',        []); ocp_max         = GetValueByKey(KeyList, ValList, 'ocp.max',           10); mcmc_seed       = GetValueByKey(KeyList, ValList, 'mcmc.seed',     0);         mcmc_samples    = GetValueByKey(KeyList, ValList, 'mcmc.samples',  8000);mcmc_thin       = GetValueByKey(KeyList, ValList, 'mcmc.thin',     5); mcmc_burnin     = GetValueByKey(KeyList, ValList, 'mcmc.burnin',   200);mcmc_chainNumber= GetValueByKey(KeyList, ValList, 'mcmc.chains',   3);  ci               = GetValueByKey(KeyList, ValList, 'ci',             false);   printProgressBar = GetValueByKey(KeyList, ValList, 'print.progress', true);     printOptions     = GetValueByKey(KeyList, ValList, 'print.options',  true);    quiet            = GetValueByKey(KeyList, ValList, 'quiet',          false);   gui              = GetValueByKey(KeyList, ValList, 'gui',            false); methods          = GetValueByKey(KeyList, ValList, 'method',        'bayes'); %% Convert the opt parameters to the individual option parameters (e.g., metadata, prior, mcmc, and extra)%......Start of displaying 'MetaData' ......metadata = [];metadata.isRegularOrdered = true;metadata.season           = season;metadata.time             = time;metadata.startTime        = start;metadata.deltaTime        = deltat;if isempty(period) && ~isempty(deltat) && ~isempty(nsamples_per_period) && ~strcmp(season, 'none')period=nsamples_per_period*deltat;end   metadata.period           = period;if strcmp(metadata.season, 'svd')% if isempty(freq)|| freq <= 1.1 || isnan(freq)%     error("When season=svd, freq must be specified and larger than 1.");% end% metadata.svdTerms = svdbasis(y, freq, deseasonalize);endmetadata.missingValue     = NaN;metadata.maxMissingRate   = 0.75;metadata.deseasonalize    = deseasonalize;metadata.detrend          = detrend;metadata.hasOutlierCmpnt  = hasOutlierCmpnt;
%........End of displaying MetaData ........%......Start of displaying 'prior' ......prior = [];prior.modelPriorType	  = 1;if ~strcmp(metadata.season, 'none')              prior.seasonMinOrder   = sorder_minmax(1);prior.seasonMaxOrder   = sorder_minmax(2);prior.seasonMinKnotNum = scp_minmax(1);prior.seasonMaxKnotNum = scp_minmax(2);   prior.seasonMinSepDist = sseg_min;prior.seasonLeftMargin  = sseg_leftmargin;prior.seasonRightMargin = sseg_rightmargin;end   prior.trendMinOrder	  = torder_minmax(1);prior.trendMaxOrder	  = torder_minmax(2);prior.trendMinKnotNum  = tcp_minmax(1);prior.trendMaxKnotNum  = tcp_minmax(2);prior.trendMinSepDist  = tseg_min;prior.trendLeftMargin  = tseg_leftmargin;prior.trendRightMargin = tseg_rightmargin;if hasOutlierCmpntprior.outlierMaxKnotNum = ocp_max;endprior.precValue        = precValue;prior.precPriorType    = precPriorType;
%......End of displaying pripr ......%......Start of displaying 'mcmc' ......mcmc = [];mcmc.seed                      = mcmc_seed;mcmc.samples                   = mcmc_samples;mcmc.thinningFactor            = mcmc_thin;mcmc.burnin                    = mcmc_burnin;mcmc.chainNumber               = mcmc_chainNumber;%mcmc.maxMoveStepSize           = 28mcmc.trendResamplingOrderProb  = 0.1000;mcmc.seasonResamplingOrderProb = 0.1700;mcmc.credIntervalAlphaLevel    = 0.950;
%......End of displaying mcmc ......%......Start of displaying 'extra' ......extra = [];extra.dumpInputData        = true;extra.whichOutputDimIsTime = 1;extra.computeCredible      = ci;extra.fastCIComputation    = true;extra.computeSeasonOrder   = true;extra.computeTrendOrder    = true;extra.computeSeasonChngpt  = true;extra.computeTrendChngpt   = true;extra.computeSeasonAmp     = ~strcmp(metadata.season, 'svd');extra.computeTrendSlope    = true;extra.tallyPosNegSeasonJump= false;extra.tallyPosNegTrendJump = false;extra.tallyIncDecTrendJump = false;extra.printProgressBar     = printProgressBar;extra.printOptions         = printOptions;extra.quiet                = quiet;extra.consoleWidth         = 70;extra.numThreadsPerCPU     = 2;extra.numParThreads        = 0;
%......End of displaying extra ......if (gui)out=Rbeast(' beastv4demo',            y, metadata, prior, mcmc, extra);elseout=Rbeast( strcat('beast_',methods), y, metadata, prior, mcmc, extra);endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310120.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

听GPT 讲Rust源代码--src/tools(37)

File: rust/src/tools/clippy/clippy_lints/src/explicit_write.rs 在Rust源代码中&#xff0c;explicit_write.rs这个文件是Clippy的一个lint插件&#xff0c;其作用是检查代码中的write!、writeln!宏使用时的不当或繁琐的情况&#xff0c;并给出相关的警告或建议。 具体来说&…

解锁大数据世界的钥匙——Hadoop HDFS安装与使用指南

目录 1、前言 2、Hadoop HDFS简介 3、Hadoop HDFS安装与配置 4、Hadoop HDFS使用 5、结语 1、前言 大数据存储与处理是当今数据科学领域中最重要的任务之一。随着互联网的迅速发展和数据量的爆炸性增长&#xff0c;传统的数据存储和处理方式已经无法满足日益增长的需求。…

<JavaEE> TCP 的通信机制(一) -- 确认应答 和 超时重传

目录 TCP的通信机制的核心特性 一、确认应答 1&#xff09;什么是确认应答&#xff1f; 2&#xff09;如何“确认”&#xff1f; 3&#xff09;如何“应答”&#xff1f; 二、超时重传 1&#xff09;丢包的概念 2&#xff09;什么是超时重传&#xff1f; 3&#xff09…

git是什么,git入门常用基本命令

文章目录 git是什么1 .git init--初始化2.git status--检测当前文件夹下面文件状态3. git add--要管理的文件4.git add . --管理当前文件夹下的所有文件5.git commit -m--生成第一个版本6.git log--查看版本的记录 git是什么 分布式&#xff0c;版本控制&#xff0c;软件 版本…

力扣LeetCode第26题 删除有序数组中的重复项

一、题目 给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。 示例 1&#xff1…

C#使用条件语句判断用户登录身份

目录 一、示例 二、生成 利用条件语句判断用户登录身份&#xff0c;根据用户登录身份的不同&#xff0c;给予相应的操作权限。 一、示例 主要用if语句及ComboBox控件。其中&#xff0c;ComboBox是窗体中的下拉列表控件&#xff0c;在使用ComboBox控件前&#xff0c;可以先向…

Matlab:K-means算法

K-means算法是一种常见的聚类算法&#xff0c;它将一组数据划分为K个不同的簇&#xff0c;以最小化每个簇内部数据点与簇中心之间的平方距离的总和为目标实现聚类。 1、基本步骤&#xff1a; 1.选择要划分的簇数K&#xff1b; 2.选择K个数据点作为初始的聚类中心&#xff1b…

用 Node.js 写一个爬虫

自己设计一个网站&#xff0c;然后去爬取别人家页面的数据来做一个自己的网站。哈哈哈&#xff0c;如果自己写着玩可能没啥事&#xff0c;但如果用这个网站来获利&#xff0c;你可能就要被寄律师函了&#xff0c;毕竟这有点‘刑’。这篇文章呢&#xff0c;就带大家爬取豆瓣TOP2…

51单片机之LED灯

51单片机之LED灯 &#x1f334;前言&#xff1a;&#x1f3ee;点亮LED灯的原理&#x1f498;点亮你的第一个LED灯&#x1f498;点亮你的八个LED灯 &#x1f4cc;让LED灯闪烁的原理&#x1f3bd; LED灯的闪烁&#x1f3d3;错误示范1&#x1f3d3;正确的LED闪烁代码应该是这样&am…

论文阅读——UniRepLKNet

UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition 当我们将一个33的conv添加到一个小卷积核ConvNet中时&#xff0c;我们预计它会同时产生三种效果——1&#xff09;使感受野更大&#xff0c;2&am…

【Linux】Linux

Linux 文章目录 Linux1. 简介2. 目录结构3. vi/vim 的使用4. 网络配置4.1 配置网络ip地址4.2 配置主机名或ip映射4.3 远程登陆及上传下载 5. 系统管理5.1 service 服务管理&#xff08;CentOS 6 版本&#xff09;5.2 systemctl 服务管理&#xff08;CentOS 7 版本&#xff09;5…

听GPT 讲Rust源代码--src/tools(39)

File: rust/src/tools/rustfmt/src/config/config_type.rs 在Rust代码中&#xff0c;rust/src/tools/rustfmt/src/config/config_type.rs文件的作用是定义了与配置相关的数据结构和函数。 Config struct&#xff08;配置结构体&#xff09;&#xff1a;该结构体用于存储rustfmt…