Spark编程实验四:Spark Streaming编程

目录

一、目的与要求

二、实验内容

三、实验步骤

1、利用Spark Streaming对三种类型的基本数据源的数据进行处理

2、利用Spark Streaming对Kafka高级数据源的数据进行处理

3、完成DStream的两种有状态转换操作

4、把DStream的数据输出保存到文本文件或MySQL数据库中

四、结果分析与实验体会


一、目的与要求

1、通过实验掌握Spark Streaming的基本编程方法;
2、熟悉利用Spark Streaming处理来自不同数据源的数据。
3、熟悉DStream的各种转换操作。
4、熟悉把DStream的数据输出保存到文本文件或MySQL数据库中。

二、实验内容

1、参照教材示例,利用Spark Streaming对三种类型的基本数据源的数据进行处理。 
2、参照教材示例,完成kafka集群的配置,利用Spark Streaming对Kafka高级数据源的数据进行处理,注意topic为你的姓名全拼
3、参照教材示例,完成DStream的两种有状态转换操作。
4、参照教材示例,完成把DStream的数据输出保存到文本文件或MySQL数据库中。

三、实验步骤

1、利用Spark Streaming对三种类型的基本数据源的数据进行处理

(1)文件流

首先打开第一个终端作为数据流终端,创建一个logfile目录:

[root@bigdata zhc]# cd /home/zhc/mycode/sparkstreaming
[root@bigdata sparkstreaming]# mkdir logfile
[root@bigdata sparkstreaming]# cd logfile

然后打开第二个终端作为流计算终端,在“/logfile/”目录下面新建一个py程序:

[root@bigdata logfile]# vim FileStreaming.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/logfile/FileStreaming.pyfrom pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContextconf = SparkConf()
conf.setAppName('TestDStream')
conf.setMaster('local[2]')
sc = SparkContext(conf = conf)
ssc = StreamingContext(sc, 10)
lines = ssc.textFileStream('file:///home/zhc/mycode/sparkstreaming/logfile')
words = lines.flatMap(lambda line: line.split(' '))
wordCounts = words.map(lambda x : (x,1)).reduceByKey(lambda a,b:a+b)
wordCounts.pprint()
ssc.start()
ssc.awaitTermination()

保存该文件并执行如下命令:

[root@bigdata logfile]# spark-submit FileStreaming.py 

然后我们进入数据流终端,在logfile目录下新建一个log2.txt文件,然后往里面输入一些英文语句后保存退出,再次切换到流计算终端,就可以看见打印出单词统计信息了。

(2)套接字流

1)使用套接字流作为数据源

继续在流计算端的sparkstreaming目录下创建一个socket目录,然后在该目录下创建一个NetworkWordCount.py程序:

[root@bigdata sparkstreaming]# mkdir socket
[root@bigdata sparkstreaming]# cd socket
[root@bigdata socket]# vim NetworkWordCount.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/socket/NetworkWordCount.pyfrom __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContextif __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCount.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingNetworkWordCount")ssc = StreamingContext(sc, 5)lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey(lambda a, b: a+b)counts.pprint()ssc.start()ssc.awaitTermination()

再在数据流终端启动Socket服务器端:

[root@bigdata logfile]# nc -lk 9999

然后再进入流计算终端,执行如下代码启动流计算:

[root@bigdata socket]# spark-submit NetworkWordCount.py localhost 9999

然后在数据流终端内手动输入一行英文句子后回车,多输入几次,流计算终端就会不断执行词频统计并打印出信息。

2)使用Socket编程实现自定义数据源

下面我们再前进一步,把数据源头的产生方式修改一下,不要使用nc程序,而是采用自己编写的程序产生Socket数据源。在数据流终端执行以下命令,编写DataSourceSocket.py文件:

[root@bigdata logfile]# cd /home/zhc/mycode/sparkstreaming/socket
[root@bigdata socket]# vim DataSourceSocket.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/socket/DataSourceSocket.py
import socket
# 生成socket对象
server = socket.socket()
# 绑定ip和端口
server.bind(('localhost', 9999))
# 监听绑定的端口
server.listen(1)
while 1:# 为了方便识别,打印一个“我在等待”print("I'm waiting the connect...")# 这里用两个值接受,因为连接上之后使用的是客户端发来请求的这个实例# 所以下面的传输要使用conn实例操作conn,addr = server.accept()# 打印连接成功print("Connect success! Connection is from %s " % addr[0])# 打印正在发送数据print('Sending data...')conn.send('I love hadoop I love spark hadoop is good spark is fast'.encode())conn.close()print('Connection is broken.')

继续在数据流终端执行如下命令启动Socket服务端:

[root@bigdata socket]# spark-submit DataSourceSocket.py

再进入流计算终端,执行如下代码启动流计算:

[root@bigdata socket]# spark-submit NetworkWordCount.py localhost 9999

(3)RDD队列流

继续在sparkstreaming目录下新建rddqueue目录并在该目录下创建RDDQueueStream.py程序:

[root@bigdata sparkstreaming]# mkdir rddqueue
[root@bigdata sparkstreaming]# cd rddqueue
[root@bigdata rddqueue]# vim RDDQueueStream.py

输入如下代码:

#/home/zhc/mycode/sparkstreaming/rddqueue/RDDQueueStreaming.py
import time
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":sc = SparkContext(appName="PythonStreamingQueueStream")ssc = StreamingContext(sc, 2)#创建一个队列,通过该队列可以把RDD推给一个RDD队列流rddQueue = []for i in range(5):rddQueue += [ssc.sparkContext.parallelize([j for j in range(1, 1001)], 10)]time.sleep(1)#创建一个RDD队列流inputStream = ssc.queueStream(rddQueue)mappedStream = inputStream.map(lambda x: (x % 10, 1))reducedStream = mappedStream.reduceByKey(lambda a, b: a + b)reducedStream.pprint()ssc.start()ssc.stop(stopSparkContext=True, stopGraceFully=True)

保存退出后,进入流计算终端再执行如下命令:

[root@bigdata rddqueue]# spark-submit RDDQueueStream.py

2、利用Spark Streaming对Kafka高级数据源的数据进行处理

此过程可以参照这篇博客的第四、五部分内容:

【数据采集与预处理】数据接入工具Kafka-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Morse_Chen/article/details/135273370?spm=1001.2014.3001.5501

3、完成DStream的两种有状态转换操作

说明:上面的词频统计程序NetworkWordCount.py采取了无状态转换操作。

(1)滑动窗口转换操作

在socket目录下创建WindowedNetworkWordCount.py程序并输入如下代码:

#/home/zhc/mycode/sparkstreaming/socket/WindowedNetworkWordCount.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":if len(sys.argv) != 3:print("Usage: WindowedNetworkWordCount.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingWindowedNetworkWordCount")ssc = StreamingContext(sc, 10)ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/socket/checkpoint")lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10)counts.pprint()ssc.start()ssc.awaitTermination()

然后在数据流终端执执行如下命令运行nc程序:

[root@bigdata sparkstreaming]# cd /home/zhc/mycode/sparkstreaming/socket
[root@bigdata socket]# nc -lk 9999

然后再在流计算终端运行WindowedNetworkWordCount.py代码:

[root@bigdata socket]# spark-submit WindowedNetworkWordCount.py localhost 9999

这时,可以查看流计算终端内显示的词频动态统计结果,可以看到,随着时间的流逝,词频统计结果会发生动态变化。 

(2)updateStateByKey操作

在“/home/zhc/mycode/sparkstreaming/”路径下新建目录“/stateful”,并在该目录下新建代码文件NetworkWordCountStateful.py。

[root@bigdata sparkstreaming]# mkdir stateful
[root@bigdata sparkstreaming]# cd stateful
[root@bigdata stateful]# vim NetworkWordCountStateful.py

输入如下代码: 

#/home/zhc/mycode/sparkstreaming/stateful/NetworkWordCountStateful.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCountStateful.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")ssc = StreamingContext(sc, 1)ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/stateful/")           # RDD with initial state (key, value) pairsinitialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)]) def updateFunc(new_values, last_sum):return sum(new_values) + (last_sum or 0) lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))running_counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).updateStateByKey(updateFunc, initialRDD=initialStateRDD) running_counts.pprint()ssc.start()ssc.awaitTermination()

在“数据源终端”,执行如下命令启动nc程序:

[root@bigdata stateful]# nc  -lk  9999

在“流计算终端”,执行如下命令提交运行程序:

[root@bigdata stateful]# spark-submit NetworkWordCountStateful.py localhost 9999

在数据源终端内手动输入一些单词并回车,再切换到流计算终端,可以看到已经输出了类似如下的词频统计信息: 

4、把DStream的数据输出保存到文本文件或MySQL数据库中

(1)把DStream输出到文本文件中

在stateful目录下新建NetworkWordCountStatefulText.py文件:

[root@bigdata stateful]# vim NetworkWordCountStatefulText.py

输入如下代码: 

#/home/zhc/mycode/sparkstreaming/stateful/NetworkWordCountStatefulText.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCountStateful.py <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")ssc = StreamingContext(sc, 1)ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/stateful/statefultext")# RDD with initial state (key, value) pairsinitialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)])def updateFunc(new_values, last_sum):return sum(new_values) + (last_sum or 0)lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))running_counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).updateStateByKey(updateFunc, initialRDD=initialStateRDD)running_counts.saveAsTextFiles("file:///home/zhc/mycode/sparkstreaming/stateful/statefultext/output")running_counts.pprint()ssc.start()ssc.awaitTermination()

在“数据源终端”,执行如下命令启动nc程序:

[root@bigdata stateful]# nc  -lk  9999

在“流计算终端”,执行如下命令提交运行程序:

[root@bigdata stateful]# spark-submit NetworkWordCountStatefulText.py localhost 9999

在数据源终端内手动输入一些单词并回车,再切换到流计算终端,可以看到已经输出了类似如下的词频统计信息:  

在“/home/zhc/mycode/sparkstreaming/stateful/statefultext”目录下便可查看到如下输出目录结果:

进入某个目录下,就可以看到类似part-00000的文件,里面包含了流计算过程的输出结果。

(2)把DStream写入到MySQL数据库中

首先启动MySQL数据库:

[root@bigdata stateful]# systemctl start mysqld.service
[root@bigdata stateful]# mysql -u root -p

然后创建spark数据库和wordcount表:

mysql> use spark;
mysql> create table wordcount (word char(20), count int(4));

然后再在终端安装python连接MySQL的模块:

[root@bigdata stateful]# pip3 install PyMySQL

在stateful目录并在该目录下创建NetworkWordCountStatefulDB.py文件: 

[root@bigdata stateful]# vim NetworkWordCountStatefulDB.py

输入如下代码: 

#/home/zhc/mycode/sparkstreaming/stateful/NetworkWordCountStatefulDB.py
from __future__ import print_function 
import sys 
import pymysql 
from pyspark import SparkContext
from pyspark.streaming import StreamingContext 
if __name__ == "__main__":if len(sys.argv) != 3:print("Usage: NetworkWordCountStateful <hostname> <port>", file=sys.stderr)exit(-1)sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")ssc = StreamingContext(sc, 1)ssc.checkpoint("file:///home/zhc/mycode/sparkstreaming/stateful/statefuldb")  # RDD with initial state (key, value) pairsinitialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)]) def updateFunc(new_values, last_sum):return sum(new_values) + (last_sum or 0) lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))running_counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).updateStateByKey(updateFunc, initialRDD=initialStateRDD) running_counts.pprint() def dbfunc(records):db = pymysql.connect(host="localhost",user="root",password="MYsql123!",database="spark")cursor = db.cursor() def doinsert(p):sql = "insert into wordcount(word,count) values ('%s', '%s')" % (str(p[0]), str(p[1]))try:cursor.execute(sql)db.commit()except:db.rollback()for item in records:doinsert(item) def func(rdd):repartitionedRDD = rdd.repartition(3)repartitionedRDD.foreachPartition(dbfunc)running_counts.foreachRDD(func)ssc.start()ssc.awaitTermination()

在“数据源终端”,执行如下命令启动nc程序:

[root@bigdata stateful]# nc  -lk  9999

在“流计算终端”,执行如下命令提交运行程序:

[root@bigdata stateful]# spark-submit NetworkWordCountStatefulDB.py localhost 9999

在数据源终端内手动输入一些单词并回车,再切换到流计算终端,可以看到已经输出了类似如下的词频统计信息:

 

到MySQL终端便可以查看wordcount表中的内容:

mysql> select * from wordcount;

.......

四、结果分析与实验体会

        Spark Streaming是一个用于实时数据处理的流式计算框架,它基于 Apache Spark 平台,提供了高可靠性、高吞吐量和容错性强等特点。在进行 Spark Streaming 编程的实验中,掌握了Spark Streaming的基本编程方法;能够利用Spark Streaming处理来自不同数据源的数据以及DStream的各种转换操作;把DStream的数据输出保存到文本文件或MySQL数据库中。
        理解DStream:DStream 是 Spark Streaming 的核心概念,代表连续的数据流。在编程时,我们可以通过输入源(比如 Kafka、Flume、HDFS)创建一个 DStream 对象,并对其进行转换和操作。需要注意的是,DStream 是以时间片为单位组织数据的,因此在编写代码时要考虑时间窗口的大小和滑动间隔。
        适当设置批处理时间间隔:批处理时间间隔决定了 Spark Streaming 处理数据的粒度,过小的时间间隔可能导致频繁的任务调度和资源开销,而过大的时间间隔则可能造成数据处理延迟。因此,在实验中需要根据具体场景和需求来选择合适的时间间隔。
        使用合适的转换操作:Spark Streaming 提供了丰富的转换操作,如 map、flatMap、filter、reduceByKey 等,可以实现对数据流的转换和处理。在实验中,需要根据具体业务逻辑和需求选择合适的转换操作,并合理组合这些操作,以获取期望的结果。
        考虑容错性和数据丢失:Spark Streaming 具备很好的容错性,可以通过记录数据流的偏移量来保证数据不会丢失。在实验中,需要注意配置合适的容错机制,确保数据处理过程中的异常情况能够被恢复,并尽量避免数据丢失。
        优化性能和资源利用:对于大规模的实时数据处理任务,性能和资源利用是非常重要的。在实验中,可以通过调整并行度、合理设置缓存策略、使用广播变量等手段来提高性能和资源利用效率。
        总的来说,Spark Streaming 是一个功能强大且易用的流式计算框架,通过合理使用其提供的特性和操作,可以实现各种实时数据处理需求。在实验中,需要深入理解其原理和机制,并根据具体需求进行合理配置和优化,以获得良好的性能和结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/310250.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NModbus-一个C#的Modbus协议库实现

NModbus-一个基于C#实现的Modbus通信协议库 最近在学习C#的时候&#xff0c;因为之前做过环保设备时使用C做过环保设备采集使用到了Modbus协议&#xff0c;当时看了一下基于C语言开发的libmodbus库。所以特意搜索看了一下C#下有什么Modbus协议库&#xff0c;在Github上面找了一…

[蓝桥杯2020国赛]答疑

答疑 题目描述 有 n 位同学同时找老师答疑。每位同学都预先估计了自己答疑的时间。 老师可以安排答疑的顺序&#xff0c;同学们要依次进入老师办公室答疑。 一位同学答疑的过程如下&#xff1a; 首先进入办公室&#xff0c;编号为 i 的同学需要 si​ 毫秒的时间。然后同学问…

After Effects 2021 for Mac(AE 2021)

After Effects 2021是一款由Adobe公司开发的视频特效和动态图形制作软件&#xff0c;它主要用于电影、电视和网络视频的后期制作。该软件可以帮助用户创建各种令人惊叹的视觉效果&#xff0c;包括动态图形、文字特效、粒子系统、3D渲染等。 After Effects 2021提供了数百种特效…

dash 中的模式匹配回调函数Pattern-Matching Callbacks 8

模式匹配 模式匹配回调选择器 MATCH、ALL 和 ALLSMALLER 允许您编写可以响应或更新任意或动态数量组件的回调函数。 此示例呈现任意数量的 dcc. Dropdown 元素&#xff0c;并且只要任何 dcc. Dropdown 元素发生更改&#xff0c;就会触发回调。尝试添加几个下拉菜单并选择它们的…

TCP/IP的五层网络模型

目录 封装&#xff08;打包快递&#xff09; 6.1应用层 6.2传输层 6.3网络层 6.4数据链路层 6.5物理层 分用&#xff08;拆快递&#xff09; 6.5物理层 6.4数据链路层 6.3网络层 6.2传输层 6.1应用层 封装&#xff08;打包快递&#xff09; 6.1应用层 此时做的数据…

Android Studio配置国内镜像源和HTTP代理/解决:Android Studio下载gradle速度慢的问题

&#xff08;方案一&#xff09;Android Studio配置国内镜像源和HTTP代理 一、配置国内镜像源/依赖库 1.1 打开项目的setting.gradle.kts文件 配置进去 pluginManagement {repositories {maven { urluri ("https://www.jitpack.io")}maven { urluri ("https:…

【C语言】分支与循环语句

什么是语句&#xff1f; C语句可分为以下五类&#xff1a; 表达式语句函数调用语句控制语句 &#xff08;本篇重点介绍&#xff09;复合语句空语句 控制语句用于控制程序的执行流程&#xff0c;以实现程序的各种结构方式。C语言支持三种结构&#xff1a; 顺序结构选择结构循…

第一讲:BeanFactory和ApplicationContext

BeanFactory和ApplicationContext 什么是BeanFactory 它是ApplicationContext的父接口它才是Spring的核心容器&#xff0c;主要的ApplicationContext实现都组合了它的功能 BeanFactory能做什么? 表面上看BeanFactory的主要方法只有getBean()&#xff0c;实际上控制反转、基…

产品经理学习-策略产品指标

目录&#xff1a; 数据指标概述 通用指标介绍 Web端常用指标 移动端常用指标 如何选择一个合适的数据指标 数据指标概述 指标是衡量目标的一个参数&#xff0c;指一项活动中预期达到的指标、目标等&#xff0c;一般用数据表示&#xff0c;因此又称为数据指标&#xff1b;…

pytorch03:transforms常见数据增强操作

目录 一、数据增强二、transforms--Crop裁剪2.1 transforms.CenterCrop2.2 transforms.RandomCrop2.3 RandomResizedCrop2.4 FiveCrop和TenCrop 三、transforms—Flip翻转、旋转3.1RandomHorizontalFlip和RandomVerticalFlip3.2 RandomRotation 四、transforms —图像变换4.1 t…

Github项目推荐-vocal-separate

项目地址 vocal-separate: 项目简述 这是一个音乐和人声分离的项目&#xff0c;基于python开发。有图形化操作界面&#xff0c;看起来还不错。 项目截图

二叉树BFS

前置知识 二叉树节点的定义 二叉树是递归定义的 /*** Definition for a binary tree node.&#xff08;LeetCode&#xff09;*/public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val val; }TreeNode(int val, TreeNode…