信号与线性系统翻转课堂笔记17——z变换及其性质

信号与线性系统翻转课堂笔记17——z变换及其性质

The Flipped Classroom17 of Signals and Linear Systems

对应教材:《信号与线性系统分析(第五版)》高等教育出版社,吴大正著

一、要点

(1)序列的z变换的定义,单边和双边z变换;
(2,重点)双边z变换的收敛域;
(3,重点)常用右边、左边、双边序列的z变换:单位序列δ(k)、阶跃序列ε(k)、指数序列a^k、正弦/余弦序列cos⁡( ω_0 k)等;
(4,重点)z变换的性质。

二、问题与解答

(*1)单边和双边z变换的定义有何区别?为什么对于拉普拉斯变换,一般只考虑单边的,但对于z变换,却需要同时考察双边和单边z变换?这两种z变换的应用场合有什么不同?分别求序列f_1 (k)=0.5^k ε(k)、f_2 (k)=-0.5^k ε(-k-1)的双边z变换。基于结果讨论:对于双边z变换,为什么必须要同时给出z变换表达式和收敛域?
(*2)总结有限长序列、右边序列、左边序列、双边序列各自收敛域的特点(可以举例说明)。序列的起点或者终点,在k=0之前或者之后,对于收敛域会有什么影响?
(3)双边序列的z变换是否一定存在?设有两个双边序列:f_1 (k)=0.5^|k| 、f_2 (k)=2^|k| ,用MATLAB分别画出这两个序列的波形(绘图范围|k|≤10),并考察这两个序列的z变换,讨论其z变换的存在性与序列特点之间的关系。
(*4)比较双边和单边z变换的移位(移序)特性有何不同,并分析它们之间为什么会有这样一个区别。请针对如图1所示序列进行分析和讨论。当移位序列和移位方式满足何种条件时,双边和单边z变换的移位特性是相同的?
在这里插入图片描述
图1

(5)利用z变换的初值定理求序列的初值,是否一定是从k=0开始递推求解?考察信号f(k)=0.5^k ε(k+1),求其双边z变换,用初值定理求解,并与序列在相应点的值进行比较。
(*6)求解习题6.8,总结序列终值的各种不同情形(等于0、等于常数、不存在等)与z变换形式(极点的分布特点)的关系。
在这里插入图片描述

1、单边与双边z变换

单边和双边z变换的定义有何区别?为什么对于拉普拉斯变换,一般只考虑单边的,但对于z变换,却需要同时考察双边和单边z变换?这两种z变换的应用场合有什么不同?分别求序列f_1 (k)=0.5^k ε(k)、f_2 (k)=-0.5^k ε(-k-1)的双边z变换。基于结果讨论:对于双边z变换,为什么必须要同时给出z变换表达式和收敛域?


在这里插入图片描述
单边拉普拉斯变换是因果系统中的拉普拉斯变换,要考虑初始状态;双边拉普拉斯没有特定条件,是普遍情况。
对于z变换,只有在k<0是f(k)=0的有始序列,单边和双边的z变换相等;否则,两者不一样。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、收敛域

总结有限长序列、右边序列、左边序列、双边序列各自收敛域的特点(可以举例说明)。序列的起点或者终点,在k=0之前或者之后,对于收敛域会有什么影响?


在这里插入图片描述
在这里插入图片描述
有限长序列
a、如果k2>k1>=0或k2>=k1>0,收敛区为0<|z|≤∞;
b、如果k2>0,k1<0, 收敛区为0<|z|<∞;
c、如果0≥k2>k1或0>k2≥k1,收敛区为0≤|z|<∞;
d、如果k1=k2=0,收敛区为0≤|z|≤∞。
右边序列
如前所述 ,级数收敛还必须要求其每一项都存在且有限。与有限长序列时的情况一样,这里也可以得出,当k1<0时,|z|不能等于无穷大,收敛区间不包含无穷远点,这时候的收敛区为Rr<|z|<∞。如果k1≥0,则不必要排除无穷远点,收敛区为Rr<|z|≤∞
左边序列、双边序列
在上面的讨论中,左右边序列是根据序列是否有始或有终来定义的,但并没有规定序列的起点或终点的位置。在实际应用中,一般以k=0为分界线,认为右边序列从k=0开始,而左边序列终止于k=-1。后面的内容中如果没有特别说明,所提及的左右序列都遵从这不规定。

3、双边序列z变换的MATLAB实现

双边序列的z变换是否一定存在?设有两个双边序列:f_1 (k)=0.5^|k| 、f_2 (k)=2^|k| ,用MATLAB分别画出这两个序列的波形(绘图范围|k|≤10),并考察这两个序列的z变换,讨论其z变换的存在性与序列特点之间的关系。


k=-10:1:10;
y1=0.5.^abs(k);
k=-10:1:10;
y2=2.^abs(k);
subplot(1,2,1)
stem(k,y1);title('y1(k)=0.5的|k|次方')
subplot(1,2,2)
stem(k,y2);title('y1(k)=2的|k|次方')

在这里插入图片描述
f_1 (k)=0.5^|k|的z变换(仅供参考)
在这里插入图片描述
f_2 (k)=2^|k| 没有z变换
在这里插入图片描述
当k趋近于无穷时,序列波形趋近于0,此时,收敛域存在,反之,不存在。

4、双边和单边z变换的位移性质

比较双边和单边z变换的移位(移序)特性有何不同,并分析它们之间为什么会有这样一个区别。请针对如图1所示序列进行分析和讨论。当移位序列和移位方式满足何种条件时,双边和单边z变换的移位特性是相同的?
在这里插入图片描述
图1


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、利用z变换初值定理求初值

利用z变换的初值定理求序列的初值,是否一定是从k=0开始递推求解?考察信号f(k)=0.5^k ε(k+1),求其双边z变换,用初值定理求解,并与序列在相应点的值进行比较。


(1)不一定
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6、终值定理不同情形与z变换形式

求解习题6.8,总结序列终值的各种不同情形(等于0、等于常数、不存在等)与z变换形式(极点的分布特点)的关系。
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

三、反思总结

暂无

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/311380.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用keepalived时虚拟IP漂移注意事项

什么是Keepalived服务 keepalived是一个开源的软件项目&#xff0c;用于实现高可用性&#xff08;HA&#xff09;的网络服务器负载均衡和故障转移。它允许将多台服务器组合在一起&#xff0c;形成一个虚拟服务器集群&#xff0c;实现负载均衡和故障转移。 keepalived的核心功…

启动gazebo harmonic

ros2 launch ros_gz_sim gz_sim.launch.py gz_version:8 如果不输入gz_version:8,默认就是6&#xff0c;启动的就是默认版本ign版本 左边那个是8&#xff0c;右边那个是6

如何有效提高建筑模板的周转次数和使用寿命?

提高建筑模板的周转次数和使用寿命对于降低工程成本和提高效率具有重要意义。在这方面&#xff0c;能强优品木业的建筑模板以其领先行业标准的周转次数和使用寿命&#xff0c;深受广泛客户的信赖。以下是一些有效提高建筑模板使用寿命的方法&#xff1a; 选用高质量材料 使用高…

【python】爬取百度热搜排行榜Top50+可视化【附源码】【送数据分析书籍】

一、导入必要的模块&#xff1a; 这篇博客将介绍如何使用Python编写一个爬虫程序&#xff0c;从斗鱼直播网站上获取图片信息并保存到本地。我们将使用requests模块发送HTTP请求和接收响应&#xff0c;以及os模块处理文件和目录操作。 如果出现模块报错 进入控制台输入&#xff…

Hadoop安装笔记1单机/伪分布式配置_Hadoop3.1.3——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理

将下发的ds_db01.sql数据库文件放置mysql中 12、编写Scala代码&#xff0c;使用Spark将MySQL的ds_db01库中表user_info的全量数据抽取到Hive的ods库中表user_info。字段名称、类型不变&#xff0c;同时添加静态分区&#xff0c;分区字段为etl_date&#xff0c;类型为String&am…

007、控制流

先看下本篇学习内容&#xff1a; 通过条件来执行 或 重复执行某些代码 是大部分编程语言的基础组成部分。在Rust中用来控制程序执行流的结构主要就是 if表达式 与 循环表达式。 1. if表达式 if表达式允许我们根据条件执行不同的代码分支。我们提供一个条件&#xff0c;并且做出…

【node-express】在commonjs的项目中使用esm和ts开发的sdk

在commonjs的项目中使用esm和ts开发的sdk 效果实现步骤 效果 在一些demo中, 大部分代码是commonjs规范开发的&#xff0c;但是要用到的sdk是ts开发的并且仅支持esm&#xff0c; 又不想配置很复杂的工程项目&#xff0c;可以这么做。如果你有更好的建议&#xff0c;希望能得到你…

SPI机制原理+使用

一、概述 SPI全称&#xff08;Service Provider Interface&#xff09;&#xff0c;是JDK内置的一种服务提供发现机制&#xff1b;SPI机制提供了组件发现和注册方式&#xff0c;可以为应用程序提供灵活的插件机制&#xff0c; 主要原理&#xff1a;接口 反射 配置文件。 二、…

如何实现WinApp的UI自动化测试?

WinApp&#xff08;WindowsAPP&#xff09;是运行在Windows操作系统上的应用程序&#xff0c;通常会提供一个可视的界面&#xff0c;用于和用户交互。例如运行在Windows系统上的Microsoft Office、PyCharm、Visual Studio Code、Chrome&#xff0c;都属于WinApp。常见的WinApp&…

【SpringBoot】SwaggerKnif4j接口文档集成

[TOC] 序&#xff1a;接口文档 ​ 在开发过程中&#xff0c;接口文档是非常重要的一环&#xff0c;在 Spring Boot 中&#xff0c;我们可以通过集成第三方来实现接口文档的自动生成。 ​ 通过注解来描述接口&#xff0c;然后根据这些注解自动生成接口文档&#xff0c;它不仅…

4.Python数据序列

Python数据序列 一、作业回顾 1、面试题 有一物,不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何? 白话文:有一个数字,不知道具体是多少,用3去除剩2,用5去除剩3,用7去除剩2个,问这个数是多少?1 ~ 100以内的整数 while循环: # 初始化计数器 i = …

python编程从入门到实践(1)

文章目录 2.2.1命名的说明2.3字符串2.3.1使用方法修改字符串的大小写2.3.2 在字符串中使用变量2.3.3 制表符 和 换行符2.5.4删除空白2.5.5 删除前缀&#xff0b;后缀 2.2.1命名的说明 只能包含&#xff1a;字母&#xff0c;下划线&#xff0c;数字 必须&#xff1a;字母&#…