EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

基本介绍

1.【EI级】 Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

模型描述

TCN-BiGRU-Multihead-Attention是一种用于多变量时间序列预测的深度学习模型。该模型结合了Temporal Convolutional Network (TCN)、Bidirectional Gated Recurrent Unit (BiGRU)和Multihead Attention三个组件,以提高模型对时间序列数据的建模能力和预测准确性。

输入层:模型接收多个变量的时间序列作为输入。每个变量的时间序列可以具有不同的特征。

Temporal Convolutional Network (TCN):TCN是一种卷积神经网络结构,用于捕捉时间序列数据中的局部和全局模式。TCN中的卷积层可以跨越不同时间步,从而捕捉长期依赖性。TCN通过多个卷积层和残差连接来构建深度模型,并提供更好的特征提取能力。

Bidirectional Gated Recurrent Unit (BiGRU):BiGRU是一种循环神经网络结构,通过正向和反向两个方向进行时间序列的建模。正向和反向的GRU单元分别记忆和传递时间序列的过去和未来信息,从而更好地捕捉序列中的上下文关系。

Multihead Attention:多头注意力机制用于模型对时间序列数据的重要特征进行自适应加权。它通过将输入序列进行多次映射,每次映射产生一个注意力头。每个注意力头关注不同的时间序列特征,然后将它们的加权表示进行融合,以获得更全面的特征表示。

输出层:最后,模型使用全连接层将多头注意力的输出进行整合,并生成最终的预测结果。预测结果可以是单个时间步的值或者是未来多个时间步的序列。

训练过程中,模型通过最小化预测值与真实标签之间的误差来进行优化,并使用反向传播算法更新模型的参数。为了避免过拟合,可以使用正则化技术如Dropout或L2正则化,并进行交叉验证和早停等操作。

TCN-BiGRU-Multihead-Attention模型通过结合TCN、BiGRU和多头注意力机制,可以更好地建模多变量时间序列数据,并提高时间序列预测的准确性。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  相关指标计算
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MAPE
maep1 = sum(abs(T_sim1 - T_train)./T_train) ./ M ;
maep2 = sum(abs(T_sim2 - T_test )./T_test) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MAPE为:', num2str(maep1)])
disp(['测试集数据的MAPE为:', num2str(maep2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  RMSE
RMSE1 = sqrt(sumsqr(T_sim1 - T_train)/M);
RMSE2 = sqrt(sumsqr(T_sim2 - T_test)/N);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的RMSE为:', num2str(RMSE1)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/312732.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全志R128 DSP开发工具安装教程

资料准备 要编译和仿真DSP,需要以下资料: DSP 核 SDK,SDK 需要包含DSP 编译源码。Cadence Xtensa 的 Windows IDE 工具 (Xplorer‑8.0.13 版本), Windows 版本 DSP 的 package 包。Cadence Xtensa 的 License,用于服…

数据结构:第7章:查找(复习)

目录 顺序查找: 折半查找: 二叉排序树: 4. (程序题) 平衡二叉树: 顺序查找: ASL 折半查找: 这里 j 表示 二叉查找树的第 j 层 二叉排序树: 二叉排序树(Binary Search Tree&…

FDM3D打印系列——RX-78-2高达胸像打印

https://v.youku.com/v_show/id_XNjI4OTQ2NjkyNA.html   大家好,我是阿赵。   2024年的第一篇博客,做一个3D打印作品,RX-78-2高达胸像打印。 成年男人是很少收得到礼物的,所以礼物都要自己准备。这个模型,就算是我…

【时钟】分布式时钟HLC|Logical Time|Vector Clock|True Time

目录 简略 详细 附录 1 分布式系统不能使用NTP的原因 简略 分布式系统中不同于单机系统不能使用NTP(网络时间协议(Network Time Protocol))来获取时间,所以我们需要一个特别的方式来获取分布式系统中的时间,mvcc也是使用time保证读…

数据结构 day6 栈+队列+二分查找+插入排序

插入排序 #include <stdio.h> #include<string.h> #include<stdlib.h> int main(int argc, const char *argv[]) {int a[]{41,50,66,38,32,49,18};int nsizeof(a)/sizeof(a[0]);int i,j,t;for(i1;i<n;i){int ta[i];for(ji-1;j>0;j--){if(t<a[j]){a…

论文阅读: AAAI 2022行人重识别方向论文-PFD_Net

本篇博客用于记录一篇行人重识别方向的论文所提出的优化方法《Pose-Guided Feature Disentangling for Occluded Person Re-identification Based on Transformer》&#xff0c;论文中提出的PDF_Net模型的backbone是采用《TransReID: Transformer-based Object Re-Identificati…

app自动化测试(Android)–触屏操作自动化

导入TouchAction Python 版本 from appium.webdriver.common.touch_action import TouchActionJava 版本 import io.appium.java_client.TouchAction;常用的手势操作 press 按下 TouchAction 提供的常用的手势操作有如下操作&#xff1a; press 按下 release 释放 move…

【vue】ffmpeg实现web在线转码播放:

文章目录 一、效果&#xff1a;二、文档&#xff1a;三、实现&#xff1a;【1】安装ffmpeg【2】引入并初始化【3】案例&#xff1a; 一、效果&#xff1a; 二、文档&#xff1a; ffmpeg HTML: HyperText Markup Language | MDN 纯前端使用ffmpeg实现视频压缩_js实现前端视频压…

项目经验简单总结

引擎 unity 2020 语言 C# lua python(用于工具链) java (用于SDK对接) js&#xff08;PC WEB SDK对接&#xff09; 编辑器 VS VSCODE IDEA eclipse 项目开发模块规划分 主项目工程&#xff0c;UI资源项目工程&#xff0c;模型场景资源项目工程 主项目工程&#xff1a;所有的…

STM32F407-14.3.10-表73具有有断路功能的互补通道OCx和OCxN的输出控制位-00x10

如上表所示&#xff0c;MOE0&#xff0c;OSSI0&#xff0c;CCxE1&#xff0c;CCxNE0时&#xff0c;OCx与OCxN的输出状态取决于GPIO端口上下拉状态。 ---------------------------------------------------------------------------------------------------------------------…

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取相机当前数据吞吐量(C++)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK里函数来获取相机当前数据吞吐量&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的数据吞吐量的技术背景CameraExplorer如何查看相机吞吐量信息在NEOAPI SDK里通过函数获取相机接口吞吐量 Baumer工业相机通过NEOAPI SDK获…

分布式【雪花算法】

雪花算法 背景&#xff1a;在分布式系统中&#xff0c;需要使用全局唯一ID&#xff0c;期待ID能够按照时间有序生成。 **原理&#xff1a;**雪花算法是 64 位 的二进制&#xff0c;一共包含了四部分&#xff1a; 1位是符号位&#xff0c;也就是最高位&#xff0c;始终是0&am…