基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(一)

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • Anaconda环境
  • 模块实现
    • 1. 数据预处理
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。

首先,我们选择了Kaggle上的高质量交通标志数据集,以确保训练数据的多样性和丰富性。接着,采用VGG和GoogLeNet等先进的卷积神经网络模型,这些模型在图像分类任务上表现卓越。

通过巧妙的网络架构和参数调整,本项目致力于提高模型的准确率。我们深入研究了不同交通标志的特征,使网络更有针对性地学习这些特征,从而增强模型在复杂场景下的泛化能力。

最终,本项目旨在为出国自驾游的用户提供一个高效而准确的交通标志识别系统,以提升驾驶安全性和用户体验。这一创新性的解决方案有望在自动驾驶和智能导航等领域产生深远的影响。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括 Python 环境、Anaconda环境。

Python环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需环境的配置,下载地址为https://www.anaconda.com/,也可下载虚拟机在Linux环境下运行代码。

鼠标右击“我的电脑”,单击“属性”,选择高级系统设置。单击“环境变量”,找到系统变量中的Path,单击“编辑”然后新建,将Python解释器所在路径粘贴并确定。

Anaconda环境

下载Anaconda,下载地址为:https://www.anaconda.com/。

打开Anaconda Prompt,用清华镜像安装CPU版本的TensorFlow,输入命令:

pip install tensorflow==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

需要安装其他库,输入以下命令:

pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install imutils -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

模块实现

本项目包括3个模块:数据预处理、模型构建、模型训练及保存。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

本项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像,下载地址为:https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign。数据集下载完成后,导入数据并进行预处理,相关代码如下:

import matplotlib
from tensorflow.keras.preprocessing.image importlImageDataGenerator
from tensorflow.keras.utils import to categorical
from tensorflow,keras.optimizers import Adam
from sklearn.metrics import classification_report
from skimage import transform
from skimage import exposure
from skimage import io
import matplotlib.pyplot as plt
import numpy as np
import random
import os

GTSRB数据集已经划分为训练集和测试集,定义load_split()函数导入训练集、测试集的图像数据和标签。因为属于同一类的图像相邻,需要打乱图像以保证训练效果。通过统计分析得到全部图像的分辨率,如图所示,有极少数图像像素超过100×100。为便于训练,将图像像素统一调整为32×32。由于图像的对比度较低,调用skimage库的equalize_adapthist()函数,使用自适应直方图均衡算法(CLAHE)增加图像的对比度。

在这里插入图片描述

load_split()函数的相关代码如下:

def load_split(basePath, csvPath):#初始化data和labels列表data = []labels = []#加载存有训练集和测试集图像存储地址和标签的csv表格,去除空格,通过换行符识别各行
#并去除第一行标题行rows = open(csvPath).read().strip().split("\n")[1:]#打乱rows的各行random.shuffle(rows)for (i, row) in enumerate(rows):#每导入1000张图像后提示if i > 0 and i % 1000 == 0:print("[INFO] processed {} total images".format(i))#取csv表格最后的两列:标签和存储地址(label, imagePath) = row.strip().split(",")[-2:]#写出完整的图像存储地址imagePath = os.path.sep.join([basePath, imagePath])#读取图像数据image = io.imread(imagePath)#统一将图像调整为32*32像素image = transform.resize(image, (32, 32))#增加图像的对比度image = exposure.equalize_adapthist(image, clip_limit=0.1)#将当前图像的数据和标签添加到data和labels列表data.append(image)labels.append(int(label))data = np.array(data)labels = np.array(labels)return (data, labels)

导入图像各类别的具体名称,通过调用load_split()函数获得训练集、测试集的图像数据和标签,将图像的数据范围从[0,225]调整为[0,1],图像标签One-Hot编码,相关代码如下:

#从signnames.csv表格中获取图像各类别的具体名称,该表格共两列,第二列是类别名称
labelNames = open("signnames.csv").read().strip().split("\n")[1:]
labelNames = [l.split(",")[1] for l in labelNames]
trainPath = os.path.sep.join(['gtsrb-german-traffic-sign', "Train.csv"])
testPath = os.path.sep.join(['gtsrb-german-traffic-sign', "Test.csv"])
print("[INFO] loading training and testing data...")
#通过调用load_split()函数获得训练集、测试集的图像数据和标签
(trainX, trainY) = load_split('gtsrb-german-traffic-sign', trainPath)
(testX, testY) = load_split('gtsrb-german-traffic-sign', testPath)
#把RGB图像的数据范围从[0,225]调整为[0,1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0
#One-hot编码图像的标签
numLabels = len(np.unique(trainY))
trainY = to_categorical(trainY, numLabels)
testY = to_categorical(testY, numLabels)

相关其它博客

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(二)

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(三)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/312874.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++类和对象(中)

前言 我们前面已经介绍过了C类和对象的入门知识,例如面向过程和面向对象,类的概念以及this指针等~!本期我们再来对类和对象介绍~! 本内容介绍 类的6个默认成员函数 构造函数 析构函数 拷贝构造 赋值运算符重载 const成员函数 取…

《ORANGE’S:一个操作系统的实现》读书笔记(十九)输入输出系统(一)

我们刚刚实现了简单的进程,你现在可能很想把它做得更加完善,比如进一步改进调度算法、增加通信机制等。但是这些工作不但做起来没有尽头,而且有些也是难以实现的,因为进程必须与I/O、内存管理等其它模块一起工作。而且&#xff0c…

低成本设计一套防串号系统

问题 物联网设备接入服务器的鉴权,如何做到防止被串号。 举一个通俗的例子,群晖,与黑群晖洗白,通常是不知道哪里搞来的黑群晖的序列号和mac,刷到系统中系统就可以正常接入群晖的服务器。如果你的序列号和mac不小心被泄…

【C++】手撕 Vector类

目录 1,vector类框架 2,vector () 3,pinrt() 4,vector(int n, const T& value T()) 5,vector(const vector& v) 6,vector(InputIterator first, InputIterator last) 7,~vector…

HarmonyOS应用程序包快速修复

快速修复概述 快速修复是HarmonyOS系统提供给开发者的一种技术手段,支持开发者以远快于应用升级的方式对应用程序包进行缺陷修复。和全量应用升级软件版本相比,快速修复的主要优势在小、快和用户体验好。在较短的时间内不中断正在运行的应用的情况下&am…

【兔子王赠书第14期】《YOLO目标检测》涵盖众多目标检测框架,附赠源代码和全书彩图!

文章目录 写在前面YOLO目标检测推荐图书本书特色内容简介作者简介 推荐理由粉丝福利写在后面 写在前面 小伙伴们好久不见吖,本期博主给大家推荐一本关于YOLO目标检测的图书,该书侧重目标检测的基础知识,包含丰富的实践内容,是目标…

Qt+Opencv:人脸检测

话接上一篇,我们仍使用在上篇《QtOpencv:Qt中部署opencv》创建的Qt项目来测试opencv提供的sample。 在正式开始本篇之前,我们先说做一下准备工作: 一、opencv官方文档 学习最权威和最可靠的方式,就是阅读官方文档和…

QtitanRibbon 开始使用实例

新建一个界面程序: 修改项目里面的源码: 至此,一个简单界面就出来了,效果如下所示:

详解信道容量,信道速率,安全速率的区别

目录 一. 信道容量与信道速率 二. 小结 三. 安全速率与物理层安全 3.1 香农物理层安全模型 3.2 安全信道速率 四. 补充安全中断概率(Secrecy Outage Probability, SOP) 五. 补充安全分集度(Secrecy Diversity Order, SDO) …

数据通信网络基础的网络参考模型华为ICT网络赛道

网络参考模型 目录 网络参考模型 2.1.应用与数据 2.2.网络参考模型与标准协议 2.2.1.OSI参考模型 2.2.2.TCP/IP参考模型 2.2.3.应用层 2.2.4.传输层 2.2.5.TCP和UDP 2.2.6.网络层 2.2.7.数据链路层 2.2.8.物理层 2.3.数据通信过程 2.1.应用与数据 应用的存在&#…

2023年年度总结,一个小白的CSDN涨粉历程

前言 滚滚长江东逝水,一去不复返。 转眼间已到2024年节点,时间如滚滚长江水向东奔流不息,在长江消失之前,都不会停歇,也不会回头。人亦如此,不管是生活还是学习,都是不断往前走的过程&#xff…

MyBatis多表映射

1. 多表映射概念 MyBatis 思想是:数据库不可能永远是你所想或所需的那个样子。 我们希望每个数据库都具备良好的第三范式或 BCNF 范式,可惜它们并不都是那样。 如果能有一种数据库映射模式,完美适配所有的应用程序查询需求,那就太…