基于斑点鬣狗算法优化的Elman神经网络数据预测 - 附代码

基于斑点鬣狗算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于斑点鬣狗算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于斑点鬣狗优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用斑点鬣狗算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于斑点鬣狗优化的Elman网络

斑点鬣狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/107542352

利用斑点鬣狗算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

斑点鬣狗参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 斑点鬣狗相关参数设定
%% 定义斑点鬣狗优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,斑点鬣狗-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/313199.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

junit单元测试Mock

在平常工作&#xff0c;经常会用到单元测试&#xff0c;那么单元测试应该怎么写呢&#xff1f; 1&#xff1a;引入包&#xff1a; <dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><…

数据结构:基于数组的环形队列(循环队列)实现

1 前言 队列是一种先进先出的线性表&#xff0c;简称为FIFO。它只允许在队尾插入成员&#xff0c;在队头删除成员&#xff0c;就像现实生活中排队上车一样。 队列的实现可以通过链表或数组完成&#xff0c;一般来说都推荐使用链表来实现队列&#xff0c;使用数组实现队列时每次…

AI人工智能技术发现了拉斐尔名画背后的秘密:这幅画并非完全由大师本人完成

最近&#xff0c;一个先进的人工智能神经网络在拉斐尔的名画中发现了一个不寻常的地方&#xff1a;其中的一副面孔并非由拉斐尔本人绘制&#xff0c;而是出自其他艺术家之手。 详细文章网址链接&#xff1a;Deep transfer learning for visual analysis and attribution of pai…

07 HAL库ADC读取电压的值

引言&#xff1a; 本文使用adc读取接在SOC的ADC的通道上外设的模拟数据&#xff0c;本文的的实验对象是一个滑动变阻器&#xff0c; 像其它的ADC外设不如光电管&#xff0c; 火焰传感器&#xff0c; 等等一些里的adc设备的根据都是差不多的。 一、ADC的基本知识 ADC&#xff08…

Apache Doris (五十五): Doris Join类型 - Colocation Join

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. Colocation Join原理

苦心分享两款免费AI 绘图软件,效果真的不错

这里写自定义目录标题 图一是 AI 绘画软件一键抠图做的&#xff0c;软件还免费 网址:https://www.yijiankoutu.com/ 一个非常强大的AI绘画网站&#xff0c;能够免费生成各种好看的二次元、3D、国风、漫画、卡通等风格的图片&#xff0c;生成图片跟文字匹配度非常高&#xff0c;…

【Qt之Quick模块】6. QML语法详解_3 QML对象特性

概述 每一个QML对象类型都包含一组已定义的特性。当进行实例时都会包含一组特性&#xff0c;这些特性是在对象类型中定义的。 一个QML文档中的对象类型声明了一个新的类型&#xff0c;即实例出一个类型。 其中包含以下特性。 the id attribute &#xff1a; id特性property a…

Node.js使用jemalloc内存分配器显著减少内存使用

前言 Node.js 默认使用的是 ptmalloc(glibc) 内存分配器&#xff0c;而&#xff1a; 在服务端领域「不会选择默认的 malloc」是一个常识。&#xff08; 来源 &#xff09; ptmalloc 的分配效率较低&#xff08; 来源 &#xff09;&#xff0c;对于 长时间、多核 / 多线程 运行…

lvm建立卷组和扩容

一、逻辑卷lvm 1.可以动态扩容 pe是逻辑卷最小的存储单元&#xff0c;最小4k 1.物理卷 将硬盘转化成 pe 2.卷组 将pe分组&#xff0c;一个逻辑卷只可以用一个组里面的pe 3.逻辑卷 类似于分区 1.1分区类型 lvm 如果使用分区&#xff0c;要修改分区类型为8e 二、…

Nacos身份认证权限绕过+漏洞利用工具分享

目录 一 JWT JWT: JWT的使用场景&#xff1a; JWT构造&#xff1a; 二 漏洞描述&#xff1a; 三 环境搭建 四 漏洞复现 五 工具漏洞复现 六 修复建议 七 工具分享 本文由掌控安全学院 - 小博 投稿 一 JWT JWT: JSON Web Token (JWT)是一个开放标准(RFC 7519)&…

【JAVA】实验一 从面向过程到面向对象

实验名称 实验一 从面向过程到面向对象 实验目的 1. 掌握Java语言简单数据类型、表达式、输入输出&#xff1b; 2. 理解Java类中main方法的编写及过程化编程&#xff1b; 3. 掌握Java数组的使用。 实验内容 1. 输入年份&#xff0c;判断是否是闰年。闰年…

看懂基本的电路原理图(入门)

文章目录 前言一、二极管二、电容三、接地一般符号四、晶体振荡器五、各种符号的含义六、查看原理图的顺序总结 前言 电子入门&#xff0c;怎么看原理图&#xff0c;各个图标都代表什么含义&#xff0c;今天好好来汇总一下。 就比如这个电路原理图来说&#xff0c;各个符号都…