【十一】【C++\动态规划】1218. 最长定差子序列、873. 最长的斐波那契子序列的长度、1027. 最长等差数列,三道题目深度解析

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

1218. 最长定差子序列 - 力扣(LeetCode)

题目解析

状态表示

状态表示一般通过经验+题目要求得到,

经验一般指,以某个位置为结尾,或者以某个位置为开始。

我们可以很容易得到这样一个状态表示,定义dp[i]表示以i位置为结尾的最长的等差子序列的长度。

状态转移方程

dp[i]表示以i位置为结尾的最长的等差子序列的长度。

我们针对于(以i位置元素为结尾的等差子序列,以及i位置元素)进行分析,想一想dp[i]能不能由其他状态推导得出。

  1. 如果只考虑i位置一个元素, 等差子序列只有i位置一个元素,长度为1,故dp[i]=1。

  2. 如果不止考虑i位置一个元素, 那么i位置元素可能跟在前面(0~i-1)中任意满足(arr[i]-arr[j]=difference)的元素后面,(0<=j<=i-1),对于确定的一个j值,此时dp[i]=dp[j]+1,意味着j位置元素和i位置元素构成等差子序列。 由于(0<=j<=i-1) 所以dp[i]=max(dp[i],dp[j]+1),需要在(0~i-1)这些状态中找到最大的值存储在dp[i]中。

将上述情况进行合并和简化,

  1. 如果第二种情况,至少有一个j满足情况,进行了赋值操作。

    1. 因为dp[i]的取值需要在自己和前面的值中选取最大的一个,并且是赋值,所以在最开始的赋值中,自己必须有初始值。

    2. 在自己初始化的前提下,dp[i]一定会被赋值为一个大于1的值,所以就不会取到第一种情况。

  2. 如果第二种情况,没有一个j满足要求,没有进行赋值操作。 那么dp[i]就只能自己构成等差子序列,dp[i]就等于1。

综上所述,我们需要初始化所有位置状态为1,保证dp[i]最开始有初始值,同时状态初始化为1,是最长等差子序列的最低标准,把只有自己一个元素的情况考虑进去了。

状态转移方程为,

 
    for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (arr[i] - arr[j] == difference) {dp[i] = fmax(dp[i], dp[j] + 1);}}}

初始化

根据状态转移方程,我们知道,想要推导出i位置的状态,需要用到(0~i-1)位置的状态,所以我们需要初始化第一个位置的状态,即dp[0]=1。

根据在状态转移方程的分析,我们需要将所有位置状态初始化为1,结合起来得到初始化,

初始化为,

 
    for (int i = 0; i < n; i++) {dp[i] = 1;}

填表顺序

根据状态转移方程,我们知道想要推导出i位置状态,需要运用到(0~i-1)位置的状态,所以我们需要从左往右填写,保证在推导i位置的状态时,(0~i-1)位置的状态都已经得到。

即,从左往右填写。

返回值

dp[i]表示以i位置为结尾的最长的等差子序列的长度。

结合题目意思,我们需要得到所有等差子序列中长度最长的长度值,所以我们需要遍历dp表,找到长度最长的长度值,然后返回。

代码实现

我们最容易得到的代码:(时间复杂度是O(n^2),但是结果超时了)

 
int longestSubsequence(int* arr, int arrSize, int difference) {int n = arrSize;int dp[n];for (int i = 0; i < n; i++) {dp[i] = 1;}int ret = 1;for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (arr[i] - arr[j] == difference) {dp[i] = fmax(dp[i], dp[j] + 1);}}ret = fmax(ret, dp[i]);}return ret;
}

所以我们必须将优化时间复杂度。

我们进行优化,最外层的循环是一定优化不了的,因为我们必须遍历dp表一遍去填写每一个值,所以我们希望优化内循环,看看能不能降低时间复杂度。

我们内循环的作用是,对于i位置的元素,遍历所有可能构成的等差序列,找到最大长度,然后赋值给dp[i]。

(遍历所有可能构成的等差序列)我们知道一个重要的信息,arr[i] - arr[j] == difference。

也就是我们满足要求的元素值我们是知道的,arr[j],

我们想能不能根据这个元素值直接找到最长的等差序列的长度?

如果可以实现,就可以把内循环的一层遍历优化为O(1)。

通过关键值直接访问,这不就是hash表吗?

如果hash表下标记录元素值,hash值记录最长的等差序列的长度,这样就可以实现优化。

既然hash值存储的是长度即dp,那么我们就做到将(元素,dp)进行绑定。就不需要dp数组了。

hash存储的就是最长长度,相当于代替了dp的作用。

这里我用c++实现,(因为c++更方便一点,c语言hash表下标不能存负数)

 
class Solution {
public:int longestSubsequence(vector<int>& arr, int difference) {unordered_map<int, int> hash;hash[arr[0]] = 1;int ret = 1;for (int i = 1; i < arr.size(); i++) {hash[arr[i]] = hash[arr[i] - difference] + 1;ret = fmax(ret, hash[arr[i]]);}return ret;}
};

873. 最长的斐波那契子序列的长度 - 力扣(LeetCode)

题目解析

状态表示

状态表示一般通过经验+题目要求得到,

经验一般指,以某个位置为结尾,或者以某个位置为开始。

我们可以很容易得到这样一个状态表示,定义dp[i]表示以i位置为结尾的最长的斐波那契子序列的长度。

我们可以尝试推导一下对应的状态转移方程。

dp[i]表示以i位置为结尾的最长的斐波那契子序列的长度。

我们针对于(以i位置元素为结尾的斐波那契子序列,以及i位置元素)进行分析,想一想dp[i]能不能由其他状态推导得出。

  1. 如果只考虑i位置一个元素, 因为斐波那契子序列最少要含有三个元素,所以实际上dp[i]应该为0,如果dp[i]为零,没办法区分i位置元素最多和前面0个元素构成斐波那契子序列还是和前面1个元素构成斐波那契子序列,因此我们这里dp[i]存储1,表示只能和前面0个元素构成斐波那契子序列,而只需要判断dp[i]的值是不是小于3就知道这个值的含义。

  2. 如果不止考虑i位置一个元素, i位置元素可能跟在前面的任意位置元素后面,(0~i-1)定义(0<=j<=i-1),针对j位置元素,如果i位置元素和j位置元素构成斐波那契子序列,那么arr[i]=arr[j]+(前一个元素),但我们不知道以j位置元素结尾的最长子序列前一个元素是不是我们希望的那个元素,所以这个状态表示不足以推导出状态转移方程。

我们可以修正一个状态转移方程,定义dp[i][j]表示以i位置和j位置为结尾的所有子序列中,最长的斐波那契子序列长度。

固定了最后两个位置的斐波那契子序列,就可以推导出前一个位置的元素,即,arr[j]-arr[i]。

以(arr[j]-arr[i])这个元素对应下标位置和i位置结尾的所有子序列中,最长的斐波那契子序列长度是dp[x][i]就可以推导出状态转移方程。

因此状态表示为,定义dp[i][j]表示以i位置和j位置为结尾的所有子序列中,最长的斐波那契子序列长度。

状态转移方程

dp[i][j]表示以i位置和j位置为结尾的所有子序列中,最长的斐波那契子序列长度。

我们针对于(以i、j位置元素为结尾的斐波那契子序列)进行分析,想一想dp[i][j]能不能由其他状态推导得出。

假设arr[i]=b,arr[j]=c,那么这个序列前一个元素就是a=c-b。我们根据a的情况进行讨论,

  1. a存在,

    1. a<b, 假设a的下标为k,此时以i、j位置为结尾的最长斐波那契子序列长度为以k,i位置为结尾的最长斐波那契子序列长度+1。即dp[i][j]=dp[k][i]+1。

    2. a>b, 假设a的下标为k,此时k介于i和j之间,所以这种情况不成立,此时dp[i][j]=2。

  2. a不存在, 此时dp[i][j]=2。

将上述情况进行合并和简化,

如果a存在且a<b,dp[i][j]=dp[k][i]+1,其他情况dp[i][j]=2,所以我们可以把其他情况放到初始化步骤进行解决,全部状态初始化为2即可。这样就只需要考虑一种情况。

我们发现,在状态转移方程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之

前,将所有的「元素+下标」绑定在一起,放到哈希表中。

即,

 
        unordered_map<int, int> hash;for (int i = 0; i < n; i++)hash[arr[i]] = i;

这样我们就可以快速通过a元素值找到对应的下标,并且可以快速知道arr数组中是否存在a元素。

状态转移方程为,

 
        for (int j = 2; j < n; j++) // 固定最后一个位置{for (int i = 1; i < j; i++) // 固定倒数第二个位置{int a = arr[j] - arr[i];// 条件成立的情况下更新if (a < arr[i] && hash.count(a))dp[i][j] = dp[hash[a]][i] + 1;}}

初始化

根据状态转移方程,我们知道在推导(i,j)位置的状态时,可能要用到(0~i-1)(i)位置的状态,所以我们初始化最基础的最小的解,推导第二个状态((1,2)位置的状态)时,需要初始化(0~1-1)(i)即dp[0][1]=2。

结合在状态转移方程中的分析,所有状态都要初始化为2,故初始化为,

 
        vector<vector<int>> dp(n, vector<int>(n, 2));

填表顺序

根据状态转移方程,我们知道在推导(i,j)位置的状态时,可能要用到(0~i-1)(i)位置的状态,所以在填写(i,j)位置的状态时,(k,i)位置的状态必须已经填写好,(0<=k<=i-1)。

如果固定j填写i,我们需要用到的是(k,i),i对应的状态应该已经全部填写,所以j应该从小到大变化。此时i的变化可以从小到大也可以从大到小。

如果固定i填写j,我们需要用到的是(k,i),k对应的状态应该已经全部填写,所以i应该从小到大变化。此时j的变化可以从小到大也可以从大到小。

返回值

dp[i][j]表示以i位置和j位置为结尾的所有子序列中,最长的斐波那契子序列长度。

结合题目意思,我们需要返回最长斐波那契子序列长度,但我们不知道最长的斐波那契子序列以哪两个位置结尾,所以我们需要遍历dp表找到最大值然后返回。

代码实现

 
class Solution {
public:int lenLongestFibSubseq(vector<int>& arr) {int n = arr.size();// 优化unordered_map<int, int> hash;for (int i = 0; i < n; i++)hash[arr[i]] = i;int ret = 2;vector<vector<int>> dp(n, vector<int>(n, 2));for (int j = 2; j < n; j++) // 固定最后一个位置{for (int i = 1; i < j; i++) // 固定倒数第二个位置{int a = arr[j] - arr[i];// 条件成立的情况下更新if (a < arr[i] && hash.count(a))dp[i][j] = dp[hash[a]][i] + 1;ret = max(ret, dp[i][j]); // 统计表中的最大值}}return ret < 3 ? 0 : ret;}
};

1027. 最长等差数列 - 力扣(LeetCode)

题目解析

状态表示

状态表示一般通过经验+题目要求得到,

经验一般指,以某个位置为结尾,或者以某个位置为开始。

我们可以很容易得到这样一个状态表示,定义dp[i]表示以i位置为结尾的最长的等差子序列的长度。

我们可以尝试推导一下对应的状态转移方程。

我们针对(以i位置为结尾的等差子序列)进行分析,想一想dp[i]能不能由其他状态推导得出。

  1. 如果只考虑i位置一个元素, dp[i]=1。

  2. 如果不止考虑i位置一个元素, i位置元素可以跟在前面任意一个元素后面,定义(0<=j<=i-1)但是我们不知道dp[j]代表的最长等差子序列长度所对应的等差子序列公差是多少,没办法确定是否可以使得(j,i)位置构成的等差子序列和(以j位置结尾的最长等差子序列长度对应的等差子序列)公差相等。所以这个状态表示不足以推导出状态转移方程。

我们可以修正状态表示,定义dp[i][j]表示以(i,j)为结尾的等差子序列最长的长度值。

因为我们只需要根据arr[i]、arr[j]两个元素就知道以(i,j)位置结尾的等差子序列长什么样子,就可以推导出该等差子序列前一个元素值,因为arr[i]-x=arr[j]-arr[i],所以x=2*arr[i]-arr[j]。

这样dp[i][j]=dp[x对应的下标][i]+1。

就可以推导出状态转移方程。

所以状态表示为,

定义dp[i][j]表示以(i,j)为结尾的等差子序列最长的长度值。

状态转移方程

设nums[i] = b,nums[j] = c,那么这个序列的前一个元素就是a = 2 * b - c。我们根据a的情况讨论:(假设a的下标是k)

  1. a存在,

    1. k<i, 此时我们需要以(k,i)位置结尾的最长等差子序列再加上j位置元素,就是以(i,j)为结尾的最长等差子序列长度,即dp[i][j]=dp[k][i]+1。

    2. k>i, 此时不满足等差子序列的定义,所以不考虑这种序列,即dp[i][j]=2。

  2. a不存在, 此时dp[i][j]=2。

将上述情况进行合并和简化,如果a存在且k<i,dp[i][j]=dp[k][i]+1。其他情况dp[i][j]=2,所以我们可以将dp表初始化为2,只用考虑a存在且k<i的情况。

我们发现,在状态转移方程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之前,将所有的「元素+下标」绑定在一起,放到哈希表中。

这样我们就可以快速通过a元素值找到对应的下标,并且可以快速知道arr数组中是否存在a元素。

故,状态转移方程为

 
        for (int i = 1; i < n; i++) // 固定倒数第一个数{for (int j = i + 1; j < n; j++) // 枚举倒数第二个数{int a = 2 * nums[i] - nums[j];if (hash.count(a)&&hash[a]<i)dp[i][j] = dp[hash[a]][i] + 1;}}

初始化

根据状态转移方程,我们知道推导(i,j)位置状态时,可能用到(k,i)位置状态,而(0<=k<=i-1),所以我们初始化最基础的最小的解,推导第二个状态((1,2)位置的状态)时,需要初始化(0~1-1)(i)即dp[0][1]=2。

结合在状态转移方程中的分析,所有状态都要初始化为2,故初始化为,

 
       vector<vector<int>> dp(n, vector<int>(n, 2)); // 创建 dp 表 + 初始化

填表顺序

根据状态转移方程,我们知道推导(i,j)位置状态时,可能用到(k,i)位置状态,(0<=k<=i-1),所以此时(k,i)位置的状态应该已经得到。

如果固定j填写i,我们需要用到的是(k,i),i对应的状态应该已经全部填写,所以j应该从小到大变化。此时i的变化可以从小到大也可以从大到小。

如果固定i填写j,我们需要用到的是(k,i),k对应的状态应该已经全部填写,所以i应该从小到大变化。此时j的变化可以从小到大也可以从大到小。

返回值

dp[i][j]表示以(i,j)为结尾的等差子序列最长的长度值。

结合题目意思,我们需要返回等差子序列最长的长度值,但是我们不知道最长的等差子序列是以哪两个位置结尾,所以我们需要遍历dp表找到最大值进行返回。

代码实现

 
class Solution {
public:int longestArithSeqLength(vector<int>& nums) {unordered_map<int, int> hash;hash[nums[0]] = 0;int n = nums.size();vector<vector<int>> dp(n, vector<int>(n, 2)); // 创建 dp 表 + 初始化int ret = 2;for (int i = 1; i < n; i++) // 固定倒数第一个数{for (int j = i + 1; j < n; j++) // 枚举倒数第二个数{int a = 2 * nums[i] - nums[j];if (hash.count(a))dp[i][j] = dp[hash[a]][i] + 1;ret = max(ret, dp[i][j]);}hash[nums[i]] = i;}return ret;}
};

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/313329.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ROS2】MOMO的鱼香ROS2(三)ROS2入门篇——ROS2第一个节点

ROS2第一个节点 引言1 认识ROS2节点1.1 节点之间的交互1.2 节点的命令行指令1.3 工作空间1.4 功能包1.4.1 功能包获取安装1.4.2 功能包相关的指令 ros2 pkg 2 ROS2构建工具—Colcon2.1 安装Colcon2.2 测试编译2.3 Colcon其他指令 3 使用RCLPY编写节点3.1 创建Python功能包3.2 编…

gem5学习(8):创建一个简单的缓存对象--Creating a simple cache object

目录 一、SimpleCache SimObject 二、Implementing the SimpleCache 1、getSlavePort() 2、handleRequest() 3、AccessEvent() 4、accessTiming() &#xff08;1&#xff09;缓存命中&#xff1a;sendResponse() &#xff08;2&#xff09;缓存未命中&#xff1a; 三、…

idea部署javaSE项目(awt+swing项目)_idea导入eclipse的javaSE项目

一.idea打开项目 选择需要部署的项目 二、设置JDK 三、引入数据库驱动包 四、执行sql脚本 四、修改项目的数据库连接 找到数据库连接文件 五.其他系统实现 JavaSwing实现学生选课管理系统 JavaSwing实现学校教务管理系统 JavaSwingsqlserver学生成绩管理系统 JavaSwing用…

文件分片上传(模拟网盘效果)

文件分片上传&#xff08;模拟网盘效果&#xff09; 文章说明简单模拟拖拽文件夹和选择文件的进度条效果效果展示结合后端实现文件上传效果展示加上分片的效果效果展示加上MD5的校验&#xff0c;实现秒传和分片的效果后续开发说明源码下载 文章说明 文章主要为了学习文件上传&a…

Selenium教程04:鼠标+键盘网页的模拟操作

在webdriver 中&#xff0c;鼠标操作都封装在ActionChains类中&#xff0c;使用的时候需要导入这个包。 from selenium.webdriver import ActionChainsActionChains方法列表如下&#xff1a; click(on_elementNone) ——单击鼠标左键click_and_hold(on_elementNone) ——点击…

matlab概率论例子

高斯概率模型&#xff1a; [f,xi] ksdensity(x): returns a probability density estimate, f, for the sample in the vector x. The estimate is based on a normal kernel function, and is evaluated at 100 equally spaced points, xi, that cover the range of the da…

基于grpc从零开始搭建一个准生产分布式应用(8) - 01 - 附:GRPC公共库源码

开始前必读&#xff1a;​​基于grpc从零开始搭建一个准生产分布式应用(0) - quickStart​​ common包中的源码&#xff0c;因后续要用所以一次性全建好了。 一、common工程完整结构 二、引入依赖包 <?xml version"1.0" encoding"UTF-8"?> <p…

【Java 数组解析:探索数组的奇妙世界】

数组的引入 我们先通过一段简单的代码引入数组的概念。 import java.util.Scanner; public class TestArray01{public static void main(String[] args){//功能&#xff1a;键盘录入十个学生的成绩&#xff0c;求和&#xff0c;求平均数&#xff1a;//定义一个求和的变量&…

电机(一):直流有刷电机和舵机

声明&#xff1a;以下图片来自于正点原子&#xff0c;仅做学习笔记使用 电机专题&#xff1a; 直流电机&#xff1a;直流有刷BDC&#xff08;内含电刷&#xff09;&#xff0c;直流无刷BLDC&#xff08;大疆的M3508和M2006&#xff09;,无刷电机有以下三种形式&#xff1a;&a…

软件测试卷王在2024年初开卷。。。

前言 转眼就到了2024年了&#xff0c;工作这几年我的薪资也从12k涨到了18k&#xff0c;对于工作只有3年多的我来说&#xff0c;还是比较满意的&#xff0c;毕竟一些工作4、5年的可能还没我高。 我可能就是大家说的卷王&#xff0c;感觉自己年轻&#xff0c;所以从早干到晚&am…

常用的 MySQL 可视化客户端

数据库可视化客户端&#xff08;GUI&#xff09;让用户在和数据库进行交互时&#xff0c;能直观地查看、创建和修改对象&#xff0c;如&#xff1a;表、行和列。让数据库操作变得更方便了。 今天&#xff0c;我们来了解下目前市场上最常用的 MySQL 可视化客户端。 官方&#x…

uni-appcss语法

锋哥原创的uni-app视频教程&#xff1a; 2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中...共计23条视频&#xff0c;包括&#xff1a;第1讲 uni…