Unity中Shader裁剪空间推导(透视相机到裁剪空间的转化矩阵)

文章目录

  • 前言
  • 一、简单看一下 观察空间—>裁剪空间—>屏幕空间 的转化
    • 1、观察空间(右手坐标系、透视相机)
    • 2、裁剪空间(左手坐标系、且转化为了齐次坐标)
    • 3、屏幕空间(把裁剪坐标归一化设置)
    • 4、从观察空间到裁剪空间
    • 5、从裁剪空间到屏幕空间后
  • 二、透视相机的参数推导
    • 1、从XoY平面,求出X~v~从观察空间到裁剪空间的坐标投影 X~p~
    • 2、从YoZ平面,求出Y~v~从观察空间到裁剪空间的坐标投影 Y~p~
  • 三、把投影到近裁剪面的坐标 归一化设置
    • 1、求归一化设置后的 x~n~
    • 2、求归一化设置后的 y~n~
    • 3、得到最后化简的公式
  • 四、构建转化矩阵
    • 1、在OpenGL[-1,1]下:
    • 2、在DirectX[1,0]下:
    • 3、把A、B代入矩阵得


前言

我们把顶点坐标信息转化为裁剪空间。有可能使用到正交相机信息 或 透视相机。我们在这篇文章中,推导一下透视相机视图空间下的坐标转化到裁剪空间的矩阵。

在这里插入图片描述


一、简单看一下 观察空间—>裁剪空间—>屏幕空间 的转化

在这里插入图片描述

1、观察空间(右手坐标系、透视相机)

在这里插入图片描述

2、裁剪空间(左手坐标系、且转化为了齐次坐标)

在这里插入图片描述

3、屏幕空间(把裁剪坐标归一化设置)

在这里插入图片描述

4、从观察空间到裁剪空间

用透视投影矩阵先转化到裁剪空间
然后,在转化为齐次坐标

5、从裁剪空间到屏幕空间后

− 1 ≤ x c w ≤ 1 -1 \leq \frac{x_c}{w}\leq1 1wxc1

− w ≤ x c ≤ w -w \leq x_c\leq w wxcw


二、透视相机的参数推导

在这里插入图片描述

  • 我们对于远裁剪面只是已知 f,其他参数都是未知

1、从XoY平面,求出Xv从观察空间到裁剪空间的坐标投影 Xp

在这里插入图片描述

  • 点 V 是观察空间下的模型顶点,xyz是已知的
    已知: ( x v , y v , z v ) 、 − n (x_v,y_v,z_v) 、 -n (xv,yv,zv)n
  • 点P是该点在近裁剪面上的投影点,xyz是未知的
    未知: ( x p , y p , z p ) (x_p,y_p,z_p) (xp,yp,zp)
  • 我们在 XoZ平面上,能求的就是 xp
    求: x p x_p xp

z p = − n z_p = -n zp=n

y p 在 X o Z 平面下,无法计算 y_p 在XoZ平面下,无法计算 ypXoZ平面下,无法计算

  • v点向Z轴做垂线,原点连接v点,围成的两个三角形相似,可得:

x p x v = − n z v \frac{x_p}{x_v} = \frac{-n}{z_v} xvxp=zvn

x p = − n z v x v x_p = \frac{-n}{z_v} x_v xp=zvnxv

P = ( − n z v x v , 未知 , − n ) P = (\frac{-n}{z_v}x_v,未知,-n) P=(zvnxv,未知,n)

2、从YoZ平面,求出Yv从观察空间到裁剪空间的坐标投影 Yp

在这里插入图片描述

  • 点 V 是观察空间下的模型顶点,xyz是已知的
    已知: ( x v , y v , z v ) 、 − n (x_v,y_v,z_v) 、 -n (xv,yv,zv)n
  • 点P是该点在近裁剪面上的投影点,xyz是未知的
    未知: ( x p , y p , z p ) (x_p,y_p,z_p) (xp,yp,zp)
  • 我们在 YoZ平面上,能求的就是 yp
    求: y p y_p yp

z p = − n z_p = -n zp=n

x p 在 X o Z 平面下,无法计算 x_p 在XoZ平面下,无法计算 xpXoZ平面下,无法计算

  • v点向Z轴做垂线,原点连接v点,围成的两个三角形相似,可得:

y p y v = − n z v \frac{y_p}{y_v} = \frac{-n}{z_v} yvyp=zvn

y p = − n z v y v y_p = \frac{-n}{z_v} y_v yp=zvnyv

P = ( − n z v x v , − n z v y v , − n ) P = (\frac{-n}{z_v}x_v,\frac{-n}{z_v} y_v,-n) P=(zvnxv,zvnyv,n)


三、把投影到近裁剪面的坐标 归一化设置

P = ( − n z v x v , − n z v y v , − n ) P = (\frac{-n}{z_v}x_v,\frac{-n}{z_v} y_v,-n) P=(zvnxv,zvnyv,n)

化到[-1,1]之间
具体参考Unity中Shader裁剪空间推导(正交相机到裁剪空间的转化矩阵)

1、求归一化设置后的 xn

  • l ≤ x ≤ r l \leq x \leq r lxr 化为: − 1 ≤ 2 x w ≤ 1 -1 \leq \frac{2x}{w} \leq 1 1w2x1

− 1 ≤ − 2 n x v z v w ≤ 1 -1\leq \frac{-2nx_v}{z_vw}\leq 1 1zvw2nxv1

− 1 ≤ − 2 n w ⋅ x v z v ≤ 1 -1\leq \frac{-2n}{w}·\frac{x_v}{z_v}\leq 1 1w2nzvxv1

2、求归一化设置后的 yn

  • l ≤ y ≤ r l \leq y \leq r lyr 化为: − 1 ≤ 2 y h ≤ 1 -1 \leq \frac{2y}{h} \leq 1 1h2y1

− 1 ≤ − 2 n y v z v h ≤ 1 -1\leq\frac{-2ny_v}{z_vh}\leq1 1zvh2nyv1

− 1 ≤ − 2 n h ⋅ y v z v ≤ 1 -1\leq\frac{-2n}{h}·\frac{y_v}{z_v}\leq1 1h2nzvyv1

3、得到最后化简的公式

由于NDC下的坐标由透视除法而得
我们假设透视除法中的 w 为 -zv
还原到裁剪空间还需要乘以 -zv

  • X:

− 1 ≤ − 2 n w ⋅ x v z v ≤ 1 -1\leq \frac{-2n}{w}·\frac{x_v}{z_v}\leq 1 1w2nzvxv1

x n = − 2 n w x v z v x_n = \frac{-2n}{w}\frac{x_v}{z_v} xn=w2nzvxv

− x n z v = 2 n w x v -x_nz_v = \frac{2n}{w}x_v xnzv=w2nxv

  • Y:

− 1 ≤ − 2 n h ⋅ y v z v ≤ 1 -1\leq\frac{-2n}{h}·\frac{y_v}{z_v}\leq1 1h2nzvyv1

y n = − 2 n h y v z v y_n = \frac{-2n}{h}\frac{y_v}{z_v} yn=h2nzvyv

− y n z v = 2 n h y v -y_n z_v= \frac{2n}{h}y_v ynzv=h2nyv

  • Z:

z n = ? z_n = ? zn=?

− z n z v = − z v ? -z_nz_v = -z_v? znzv=zv?

  • W:

w = 1 w = 1 w=1

− w n z v = − z v -w_nz_v = -z_v wnzv=zv


四、构建转化矩阵

裁剪空间下的点 = 观察空间下的基向量 在 裁剪空间下的矩阵 * 点在观察空间下的坐标

P c = [ V c ] ⋅ P v P_c = [V_c]·P_v Pc=[Vc]Pv

P c = [ C v ] − 1 ⋅ P v P_c = [C_v]^{-1}·P_v Pc=[Cv]1Pv

P c = [ C v ] T ⋅ P v P_c = [C_v]^{T}·P_v Pc=[Cv]TPv

  • − x n z v = 2 n w x v -x_nz_v = \frac{2n}{w}x_v xnzv=w2nxv
  • − y n z v = 2 n h y v -y_n z_v= \frac{2n}{h}y_v ynzv=h2nyv
  • − z n z v = − z v ? -z_nz_v = -z_v? znzv=zv?
  • − w n z v = − z v -w_nz_v = -z_v wnzv=zv

[ 2 v w 0 ? ? 0 2 n h ? ? 0 0 ? ? 0 0 ? ? ] T = [ 2 v w 0 0 0 0 2 n h 0 0 ? ? ? ? ? ? ? ? ] \begin{bmatrix} \frac{2v}{w} & 0 & ? &?\\ 0 & \frac{2n}{h} & ? &?\\ 0 & 0 & ? &?\\ 0 & 0 & ? & ?\\ \end{bmatrix}^T =\begin{bmatrix} \frac{2v}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ ? & ? & ? &?\\ ? & ? & ? & ?\\ \end{bmatrix} w2v0000h2n00???????? T= w2v0??0h2n??00??00??

[ 2 v w 0 0 0 0 2 n h 0 0 ? ? ? ? ? ? ? ? ] ⋅ [ x v y v z v 1 ] = ( − x n z v , − y n z v , − z n z v , − w n z v ) \begin{bmatrix} \frac{2v}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ ? & ? & ? &?\\ ? & ? & ? & ?\\ \end{bmatrix} · \begin{bmatrix} x_v\\ y_v\\ z_v\\ 1\\ \end{bmatrix} = (-x_nz_v,-y_nz_v,-z_nz_v,-w_nz_v) w2v0??0h2n??00??00?? xvyvzv1 =(xnzv,ynzv,znzv,wnzv)

最后一行由于相乘结果为1可以得出,把最后未知部分设为A,B
[ 2 v w 0 0 0 0 2 n h 0 0 0 0 A B 0 0 − 1 0 ] ⋅ [ x v y v z v 1 ] \begin{bmatrix} \frac{2v}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & A &B\\ 0 & 0 & -1 & 0\\ \end{bmatrix} · \begin{bmatrix} x_v\\ y_v\\ z_v\\ 1\\ \end{bmatrix} w2v0000h2n0000A100B0 xvyvzv1

z c = A z v + B z_c = Az_v+B zc=Azv+B

− z n z v = − z v -z_nz_v = -z_v znzv=zv

z c − z v = A z v + B − z v \frac{z_c}{-z_v} = \frac{Az_v+B}{-z_v} zvzc=zvAzv+B

z n = A z v + B − z v z_n = \frac{Az_v+B}{-z_v} zn=zvAzv+B

1、在OpenGL[-1,1]下:

z n = A z v + B − z v z_n = \frac{Az_v+B}{-z_v} zn=zvAzv+B

{ z v = − n , z n = − 1 z v = − f , z n = 1 \begin{cases} z_v = -n,z_n=-1 \\ z_v = -f,z_n = 1 \end{cases} {zv=n,zn=1zv=f,zn=1

{ − 1 = − A n + B n 1 = − A f + B f \begin{cases} -1 = \frac{-An+B}{n}\\ 1 = \frac{-Af + B}{f} \end{cases} {1=nAn+B1=fAf+B

{ − n = − A n + B f = − A f + B \begin{cases} -n = -An+B\\ f = -Af + B \end{cases} {n=An+Bf=Af+B

B = A n − n B = An - n B=Ann

f = − A f + A n − n f = -Af +An-n f=Af+Ann

f + n = A ( n − f ) f + n= A(n-f) f+n=A(nf)

A = n + f n − f A = \frac{n+f}{n-f} A=nfn+f

B = n + f n − f n − n B = \frac{n+f}{n-f}n-n B=nfn+fnn

B = n 2 + f n n − f n 2 − n f n − f B = \frac{n^2 + fn}{n-f}\frac{n^2-nf}{n-f} B=nfn2+fnnfn2nf

B = 2 n f n − f B = \frac{2nf}{n-f} B=nf2nf

2、在DirectX[1,0]下:

z n = A z v + B − z v z_n = \frac{Az_v+B}{-z_v} zn=zvAzv+B

{ z v = − n , z n = 1 z v = − f , z n = 0 \begin{cases} z_v = -n,z_n=1 \\ z_v = -f,z_n = 0 \end{cases} {zv=n,zn=1zv=f,zn=0

{ 1 = − A n + B n 0 = − A f + B f \begin{cases} 1 = \frac{-An+B}{n}\\ 0 = \frac{-Af+B}{f} \end{cases} {1=nAn+B0=fAf+B

{ n = − A n + B 0 = − A f + B \begin{cases} n = -An+B\\ 0 = -Af+B \end{cases} {n=An+B0=Af+B

B = A f B = Af B=Af

n = − A n + A f n = -An+Af n=An+Af

n = A ( f − n ) n = A(f-n) n=A(fn)

A = n f − n A =\frac{n}{f-n} A=fnn

B = n f f − n B = \frac{nf}{f-n} B=fnnf

3、把A、B代入矩阵得

  • OpenGL
    [ 2 n w 0 0 0 0 2 n h 0 0 0 0 n + f n − f 2 n f n − f 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n+f}{n-f} &\frac{2nf}{n-f}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000nfn+f100nf2nf0
  • DirectX
    [ 2 n w 0 0 0 0 2 n h 0 0 0 0 n f − n n f f − n 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n}{f-n} &\frac{nf}{f-n}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000fnn100fnnf0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/313689.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【PXIE301-208】基于PXIE总线架构的Serial RapidIO总线通讯协议仿真卡

板卡概述 PXIE301-208是一款基于3U PXIE总线架构的Serial RapidIO总线通讯协议仿真卡。该板卡采用Xilinx的高性能Kintex系列FPGA作为主处理器,实现各个接口之间的数据互联、处理以及实时信号处理。板卡支持4路SFP光纤接口,支持一个PCIe x8主机接口&…

考pmp有用么?

PMP考出来究竟有什么用,这个问题一直是站在边缘的朋友经常思考的问题,其实我想说的是,当能力和经验都充足的时候,可能这单单的一张证书就能有莫大的作用,帮助你实现目前所追求的东西。 当我利用这张证书达到我的目的之…

如何解决企业内部FTP文件传输速度过慢和安全问题

在数据化时代里,企业内部的文件传输永远是刚需,而因为 FTP协议的简单、易用、广泛支持等优点,让很多企业早期都普遍使用,随着数量量的增多,和对安全的要求越来越高,FTP也暴露出了一些列问题,小编…

【起草】【第十二章】定制ChatGPT数字亲人

身为普普通通的我们,不知道亲人们在哪一天就要离开这个世界 ? 作为普普通通的程序员,我们可以为我们的亲人做点什么 ? 让他们以数字资产形式留在人世间 ? 对话|6岁女孩病逝捐器官,妈妈:她去…

互联网大厂面试题目

阿里篇 1.1.1 如何实现一个高效的单向链表逆序输出? 1.1.2 已知sqrt(2)约等于1.414,要求不用数学库,求sqrt(2)精确到小数点后10位 1.1.3 给定一个二叉搜索树(BST),找到树中第 K 小的节点 1.1.4 LRU缓存机制 1.1.5 关于epoll和…

什么是缓存、为什么要用缓存、缓存分类、缓存测试、缓存更新、缓存设计考虑点、缓存测试点

一、缓存 缓存是一种将数据存储在高速缓存中的技术,它可以提高应用程序的性能和响应速度。 二、 为什么要用缓存 1. 高性能(主要目的) 查询耗时,但变化少,又有很多读请求情况下,可以将查询结果放到缓存中。减少对数据库的压力&…

论数据资源持有权(上)

关注WX公众号: commindtech77, 获得数据资产相关白皮书下载地址 1. 回复关键字:数据资源入表白皮书 下载 《2023数据资源入表白皮书》 2. 回复关键字:光大银行 下载 光大银行-《商业银行数据资产会计核算研究报告》 3. 回复关键字…

Avalonia学习(十六)-Mapsui

今天开始继续Avalonia练习。 本节&#xff1a;Mapsui 1.引入 Mapsui.Avalonia 2.项目引入 前台代码 <Window xmlns"https://github.com/avaloniaui"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:vm"using:MapsuiAvalonia.Vi…

Python列表推导式(for表达式)及用法

for 表达式&#xff08;列表推导式&#xff09;用于利用其他区间、元组、列表等可迭代对象创建新的列表。 for 表达式的语法格式如下&#xff1a; [表达式 for 循环计数器 in 可迭代对象] 从上面的语法格式可以看出&#xff0c;for 表达式与普通 for 循环的区别有以下两点&a…

23种设计模式Python版

目录 创建型模式简单工厂模式工厂方法模式抽象工厂模式单例模式原型模式建造者模式 结构型模式适配器模式桥接模式组合模式装饰器模式外观模式享元模式代理模式 行为型模式职责链模式命令模式解释器模式迭代器模式中介者模式备忘录模式观察者模式状态模式策略模式模板方法模式访…

为什么在windows平台下将proto文件编译为py版本,然后拷贝到mac平台就不能用了,还要重新编译proto文件才可以

问题的根本在于不同平台上编译的 Python protobuf 模块可能是不同的&#xff0c;因为 protobuf 模块通常会和底层的 C protobuf 库绑定&#xff0c;而这些库是特定于操作系统和架构的。因此&#xff0c;你在 Windows 平台上编译的 protobuf 模块在 macOS 上可能不兼容。 为了解…

SpringBoot自动配置原理和自定义启动器

1、自动配置的原理 项目在加载上下文时&#xff0c;会根据SpringBootApplication注解运行。该注解中有一个CompoentScan注解&#xff0c;会扫描和加载当前启动类所在的目录&#xff0c;以及所有的子目录&#xff1b;还有一个是EnableAutoConfiguration注解&#xff0c;这个注解…