SELinux 安全模型——MLS

首发公号:Rand_cs
BLP 模型:于1973年被提出,是一种模拟军事安全策略的计算机访问控制模型,它是最早也是最常用的一种多级访问控制模型,主要用于保证系统信息的机密性,是第一个严格形式化的安全模型

暂时无法在飞书文档外展示此内容

在这里插入图片描述

多层安全的核心:“数据流向只能是由低到高(或者平级流动)”,所以只能向上写数据,从下层读数据,或者同级之间读写数据。

此图有四个安全级别,由低到高分别为:unclassified → restricted → confidential → secret

进程和4个文件的安全级别如上图所示:

  • 进程只能写文件A,不能读。因为文件A的安全级别程度高于进程,所以进程不能读。但是数据流向可以由低到高,所以进程可以向文件A进行写操作
  • 进程和文件B是同级,所以数据流向可以双向流通,即进程可以读写文件B
  • 文件C的安全级别低于进程,所以数据流向只能是文件到进程,即进程只能读取文件数据,不能写。假如进程可以写文件C,那么confidential的数据流向了restrict类型的文件,则该confidential数据可能被其他的restrict级别的进程读取,造成机密信息泄露,所以高级别进程只能对低级别文件进行读操作。

Context

MLS 模式在 SELinux 中是可选的,在编译时期开启,SELinux 的编译工具有 checkpolicy 或者 checkmodule,当使用这两个命令时加上选项 -M 便可以开启多层安全模式。这时你的策略应该也要支持 MLS,也就是定义某个文件的安全上下文的时候应该带上它的 mls/mcs

开启多层安全后安全上下文扩展最后一个字段 “安全级别(Security Level or Level)”,安全上下文完整形式如下所示:

安全级别分为两个部分,敏感度和类别,敏感度可以对文件分级,类别对文件分类,具体如下所示:

在这里插入图片描述

sensitivity

敏感度,必须要有

定义方式:

sensitivity s0;
sensitivity s1;
sensitivity s2;
sensitivity s3 alias secret;  //给s3定义个别名secret

优先级高低定义:

dominance { s0 s1 s2 s3 }   #优先级从低到高,即s0最低,s3最高

category

类别,可选

定义方式:

category c0 alias blue;
category c1 alias red;
category c2 alias green;
category c3 alias orange;
category c4 alias white;

level

安全级别:一个敏感度和零个或多个类别的组合,即 sensitivity[:category...] 这个整体就是安全级别

有两个安全级别:低安全级别-高安全级别,高安全级别可选。

定义方式:

level  s0:c0.c2;      #此安全级别的敏感度为s0,类别为c0 c1 c2,即 . 表示范围
level  s1:c0.c2,c4;   #此安全级别的敏感度为s1,类别为c0 c1 c2 c4,没有c3,即,表示分开的两段类别 
安全级别之间的关系
  • l1 dominates l2
    • l 1. s e n s i t i v i t y ≥ l 2. s e n s i t i v i t y l1.sensitivity \ge l2.sensitivity l1.sensitivityl2.sensitivity l1的敏感度高于或等于l2
    • l 2. c a t e g o r y ⊆ l 1. c a t e g o r y l2.category \subseteq l1.category l2.categoryl1.category l1的类别是l2超集或等于l2
  • l1 is dominated by l2:
    • l 1. s e n s i t i v i t y ≤ l 2. s e n s i t i v i t y l1.sensitivity \le l2.sensitivity l1.sensitivityl2.sensitivity
    • l 1. c a t e g o r y ⊆ l 2. c a t e g o r y l1.category \subseteq l2.category l1.categoryl2.category
  • l1 equals l2:
    • l 1. s e n s i t i v i t y = l 2. s e n s i t i v i t y l1.sensitivity = l2.sensitivity l1.sensitivity=l2.sensitivity
    • l 1. c a t e g o r y = l 2. c a t e g o r y l1.category = l2.category l1.category=l2.category
  • l1 is incomparable to l2
    • !(l1 dom l2) && !(l2 dom l1)

具体代码:

struct mls_level {u32 sens;       /* sensitivity */ //敏感度,一个整数struct ebitmap cat; /* category set */  //类别,一个位图
};
//range:低安全级别-高安全级别
struct mls_range {struct mls_level level[2]; /* low == level[0], high == level[1] */
};static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2)
{return ((l1->sens == l2->sens) &&    //敏感度相同ebitmap_cmp(&l1->cat, &l2->cat));  //类别集合也相同
}static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2)
{return ((l1->sens >= l2->sens) &&   //敏感度大于等于ebitmap_contains(&l1->cat, &l2->cat));  //类别集合要包含
}//两个安全级别不相关
#define mls_level_incomp(l1, l2) \
(!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1)))//l2安全级别在 l1 l3 之间
#define mls_level_between(l1, l2, l3) \
(mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1)))//l1-h1 包含 l2-h2
#define mls_range_contains(r1, r2) \
(mls_level_dom(&(r2).level[0], &(r1).level[0]) && \mls_level_dom(&(r1).level[1], &(r2).level[1]))

通过 mlsconstrain 实现 BLP 模型:

mlsconstrain 又是另外一个策略语法,直接来看例子:

mlsconstrain  class_set  perm_set  expression ;
#expression部分为u r t l h的布尔表达式
#u1, r1, t1, l1, h1 – source user, role and type, low security level, high security level; 
#u2, r2, t2, l2, h2 – target user, role and type, low security level, high security level;

举例说明:mlscontrain file read (l1 dom l2); 此语句说明当源进程想要读取目标文件时,需要源进程的安全级别 l1 高于或等于目标文件的安全级别 l2

实现 no read up,即只能读取同级别或者低级别的数据

mlsconstrain { dir file lnk_file chr_file blk_file sock_file fifo_file } { read getattr execute } ((l1 eq l2) or ( l1 dom l2 ) or (t1 == mlsfileread));
  • l1 eq l2 表示 源和目标的安全级别相同,所以对于 dir file 等类型文件的 read getattr execute 操作可以执行
  • l1 dom l2,表示源的安全级别高于目标的安全级别,高级别可以读取低级别,所以此情况下 dir file 等类型文件的 read getattr execute 操作也允许执行
  • 再或者我们可以特殊定义一个类型,只要源类型是 mlsfileread,那么就可以执行读取操作

实现 no write down,即只能写同级别或者高级别的数据:

mlsconstrain { file lnk_file fifo_file dir chr_file blk_file sock_file } { write create setattr relabelfrom append unlink link rename mounton }  (( l1 eq l2 ) or (l1 domby l2) or (t1 == mlsfilewrite)); 

含义基本同上,只不过是反着来。上述就是 SELinux 中实现 BLP 的两个例子,想要完整的实现,还有其他的策略,有兴趣的可以去看 refpolicy 的源码

好了,本文先到这里,有什么问题欢迎来讨论交流
首发公号:Rand_cs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/314003.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI模型私人订制

使用AI可以把你的脸换成明星的脸,可以用于直播、录播。 AI换脸1 也可以把视频中明星的脸换成你的脸 AI换脸2 之所以能够替换成功,是因为我们有一个AI人物模型,AI驱动这个模型就可以在录制视频的时候替换指定人物的脸。AI模型从哪里来&…

SELinux 基本原理

本文讲述 SELinux 保护安全的基本原理 首发公号:Rand_cs 安全检查顺序 不废话,直接先来看张图 当我们执行系统调用的时候,会首先对某些错误情况进行检查,如果失败通常会得到一些 error 信息,通过查看全局变量 errno …

2.2 设计FMEA步骤二:结构分析

2.2.1 目的 设计结构分析的目的是将设计识别和分解为系统、子系统、组件和零件,以便进行技术风险分析。其主要目标包括: 可视化分析范围结构化表示:方块图、边界图、数字模型、实体零件识别设计接口、交互作用和间隙促进顾客和供应商工程团队之间的协作(接口责任)为功能分…

微服务(11)

目录 51.pod的重启策略是什么? 52.描述一下pod的生命周期有哪些状态? 53.创建一个pod的流程是什么? 54.删除一个Pod会发生什么事情? 55.k8s的Service是什么? 51.pod的重启策略是什么? 可以通过命令kub…

【熔断限流组件resilience4j和hystrix】

文章目录 🔊博主介绍🥤本文内容起因resilience4j落地实现pom.xml依赖application.yml配置接口使用 hystrix 落地实现pom.xml依赖启动类上添加注解接口上使用 📢文章总结📥博主目标 🔊博主介绍 🌟我是廖志伟…

BLP模型

本篇文章是调研了许多资料后对 BLP 模型的一个总结 首发公号:Rand_cs MLS,Multi-level Security,主要关心的是数据机密性 D. Elliott Bell 和 Leonard J. LaPadula 在 1996 年提出了基本的 BLP 模型,主要有两个性质:…

【形式语言与自动机/编译原理】CFG-->Greibach-->NPDA(2)

本文将详细讲解《形式语言与自动机》(研究生课程)或《编译原理》(本科生课程)中的上下文无关文法(CFG)转换成Greibach范式,再转成下推自动机(NPDA)识别语言是否可以被接受…

机器学习部分相关概念

数据集(Data Set)即数据的集合,每一条单独的数据被称为样本(Sample)。 对于每个样本,它通常具有一些属性(Attribute)或者特征(Feature), 特征所具体取得值被称为特征值(Feature Value)。 西瓜数据集 色泽根蒂纹理青绿稍蜷模糊乌黑蜷缩清晰 …

基于JavaWeb实验室预约管理系统(源码+数据库+文档)

一、项目简介 本项目是一套基于JavaWeb实验室预约管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,e…

C++程序编译

GCC编译器 文章目录 GCC编译器 源文件 为 Main.cpp 注意cpp文件 一定要用g命令 否则没办法执行 预处理(Pre-Processing):首先会经过预处理器将程序中的预编译指令进行处理,然后把源文件中的注释这些没用的东西都给扬了。 g -E Mai…

redis 三主六从高可用docker(不固定ip)

redis集群(cluster)笔记 redis 三主三从高可用集群docker swarm redis 三主六从高可用docker(不固定ip) 此博客解决,redis加入集群后,是用于停掉后重启,将nodes.conf中的旧的Ip替换为新的IP,从而达到不会因为IP变化导致集群无法…

《VulnHub》DC:1

title: 《VulnHub》DC:1 date: 2024-01-01 12:46:49 updated: 2024-01-01 12:46:50 categories: WriteUp:Cyber-Range excerpt: 主机发现、目标信息扫描、漏洞扫描、网站指纹信息识别、网站目录扫描、drupal CMS 漏洞利用(CVE 2014-3704&…