12.31信号位宽转换(整数,非整数),时钟分频(奇数,偶数,任意小数,占空比),自动售货机(1,2),游戏机

非整数倍数据位宽转换8to12

所谓非整数倍,就是利用一个cnt去周期性决定寄存器里怎么输出,这个cnt的值,是最小公倍数

寄存器就正常的寄存,怎么输入怎么寄存 

`timescale 1ns/1nsmodule width_8to12(input 				   clk 		,   input 			      rst_n		,input				      valid_in	,input	[7:0]			   data_in	,output  reg			   valid_out,output  reg [11:0]   data_out
);
reg[7:0]data_lock;
reg[1:0]valid_cnt;
always@(posedge clk,negedge rst_n)beginif(!rst_n)data_lock<=0;else if(valid_in)data_lock<=data_in;
end
always@(posedge clk,negedge rst_n)beginif(!rst_n)valid_cnt<=0;else if(valid_in)beginif(valid_cnt==2'd2)valid_cnt<=0;elsevalid_cnt<=valid_cnt+1;end
end
always@(posedge clk,negedge rst_n)beginif(!rst_n)valid_out<=0;else if(valid_in&&valid_cnt==1)valid_out<=1;else if(valid_in&&valid_cnt==2)valid_out<=1;elsevalid_out<=0;
end
always@(posedge clk,negedge rst_n)beginif(!rst_n)data_out<=0;else if(valid_in&&valid_cnt==1)data_out<={data_lock,data_in[7:4]};else if(valid_in&&valid_cnt==2)data_out<={data_lock[3:0],data_in};
end
endmodule

为什么不需要2个8bit的寄存器进行数据缓存:

根据时序图, data_out是在两个数据输入之后的下一个时钟周期产生输出,如果采用两个寄存器缓存两个数据,那么第二个数据还没缓存进寄存器后就要输出数据,这样不能实现满足时序要求的数据输出。

根据时序图,数据是在第二个数据到来之后输出,当仅有一个数据到来时,不产生输出,所以内部设计一个计数器(valid_cnt),用来指示数据接收状态。当检测到valid_in拉高时,valid_cnt加1,valid_cnt在0-2之间循环,valid_cnt复位值是0。当valid_cnt是1或2,且valid_in为高时,输出数据,valid_out拉高。

当valid_cnt==1且valid_in为高时,data_out <= {data_lock, data_in[7:4]};当valid_cnt==2且valid_in为高时,data_out <= {data_lock[3:0], data_in}。

就是说,复位的时候,寄存器里一个也没有,所以就不能输出,然后存了一个后,就是1,再来就可以输出,这时输出,就输出存的8个以及新输入的前4个,并且进到2,表示此时寄存器里存的是第二个输入的,而且前半个已经输出过了,该输出后四个,所以此时要输出,就是输出寄存器的后四个以及新输入的全部,这时候寄存器内部实际上也就相当于空了

也就是说valid_cnt决定输出信号,怎么处理寄存器里的信号

电路图

 

 

是时序逻辑就是要用触发器,<=最直接的就是D触发器  

 整数倍数据位宽转换8to16

`timescale 1ns/1nsmodule width_8to16(input 				   clk 		,   input 				   rst_n		,input				      valid_in	,input	   [7:0]		   data_in	,output	reg			valid_out,output   reg [15:0]	data_out
);
reg[0:0]cnt;
reg[7:0]ram;
always@(posedge clk,negedge rst_n)beginif(!rst_n)cnt<=0;else if(valid_in)cnt<=(cnt)?0:1;else cnt<=cnt;
end
always@(posedge clk,negedge rst_n)beginif(!rst_n)ram<=0;else if(valid_in)ram<=data_in; elseram<=ram;
end
always@(posedge clk,negedge rst_n)beginif(!rst_n)begindata_out<=0;valid_out<=0;endelse if(cnt&&valid_in)begindata_out<={ram,data_in};valid_out<=1;endelse begindata_out<=data_out;valid_out<=0;end
end
endmodule

注意有if情况遗漏时,自动生成锁存器锁存之前的状态

电路图

QN代表反态,即取反

空线代表不利用相应的信号,即不做后续的输出 

简单的逻辑就是生成一个简单的D触发器 

 

 

这里的D信号,就是控制触发器现态Q的信号,做一些处理,就是二路选择器,然后上面是一个与门;上面的没有是因为锁存的是8位的信号,不是0或1 

 时钟分频(偶数

`timescale 1ns/1nsmodule even_div(input     wire rst ,input     wire clk_in,output    wire clk_out2,output    wire clk_out4,output    wire clk_out8);
//*************code***********//
reg clk2,clk4,clk8;
always@(posedge clk_in,negedge rst)beginif(!rst)clk2<=0;elseclk2<=~clk2;
end
always@(posedge clk2,negedge rst)beginif(!rst)clk4<=0;elseclk4<=~clk4;
end
always@(posedge clk4,negedge rst)beginif(!rst)clk8<=0;elseclk8<=~clk8;
end
assign clk_out8=clk8;
assign clk_out4=clk4;
assign clk_out2=clk2;
//*************code***********//
endmodule

D触发器

D触发器构建电路图,就是<=右边的为输入的D信号,左边的就是输出的Q现态信号

 D触发器接口,有控制触发器触发的时钟信号,以及D信号,就是等式右侧的信号,输出的就是转换后的信号

占空比50%的奇数分频

`timescale 1ns/1nsmodule odo_div_or#(parameter N = 7)(input    wire  rst ,input    wire  clk_in,output   wire  clk_out7);reg [3:0]            cnt ;always @(posedge clk_in or negedge rst) beginif (!rst) begincnt    <= 'b0 ;endelse if (cnt == N-1) begincnt    <= 'b0 ;endelse begincnt    <= cnt + 1'b1 ;endendreg                  clkp ;always @(posedge clk_in or negedge rst) beginif (!rst) beginclkp <= 1'b0 ;endelse if (cnt == (N>>1)) begin clkp <= 1 ;endelse if (cnt == N-1) begin clkp <= 0 ;endendreg                  clkn ;always @(negedge clk_in or negedge rst) beginif (!rst) beginclkn <= 1'b0 ;endelse if (cnt == (N>>1) ) begin clkn <= 1 ;endelse if (cnt == N-1) begin clkn <= 0 ;endendassign clk_out7 = clkp | clkn ;endmodule

对于奇数分频电路,主要难点在于50%占空比的实现。单触发沿在奇数分频中是没有办法实现50%占空比的,因此需要考虑使用双边沿加组合逻辑实现50%占空比 

clkout7的翻转第一次是在上升沿,第二次是在下降沿。

任意小数分频

请设计一个可以实现任意小数分频的时钟分频器,比如说8.7分频的时钟信号

注意rst为低电平复位

提示:

其实本质上是一个简单的数学问题,即如何使用最小公倍数得到时钟周期的分别频比。

设小数为nn,此处以8.7倍分频的时钟周期为例。

首先,由于不能在硬件上进行小数的运算(比如2.1个时钟这种是不现实的,也不存在3.3个寄存器),小数分频不能做到分频后每个时钟周期都是源时钟的nn倍,也无法实现占空比为1/2,因此,考虑小数分频,其实现方式应当为53个clkout时钟周期是10个clkin时钟周期的8.7倍。

其实和非整数倍数据转位宽差不多,

非整数倍数据转位宽,是用一个计数器,去记录当前是输出到第几个阶段了

用一个寄存器,然后记录当前输入的信号,最后就依据计数器的信号,做出相应的输出,结合此时输出的信号;

不同的点在于,非整数倍的数据位宽转换,每个时钟周期内都会输出信号

而小数分频器,是一定时间内为1,一定时间内为0

分频器,是把信号频率变慢,原来10秒内跳10次,现在只跳1次

思路就是逼近模拟,在大的周期上表现的是小数分频,小的周期里就用奇数分频以及偶数分频逼近,然后一个计数器去记录大的周期,一个计数器就是实现每个小的周期上的分频;那个大的周期上的,决定此时小的周期上是用什么分频器,是奇数还是偶数;然后用一个FLAG标志,去记录当前是用奇数分频器还是偶数分频器,这个FLAG在中间某一点以及整个大周期结束时去进行更换,中间某一点通过计算得到 

`timescale 1ns/1nsmodule div_M_N(input  wire clk_in,input  wire rst,output wire clk_out
);parameter M_N = 8'd87; parameter c89 = 8'd24;  // 8/9时钟切换点parameter div_e = 5'd8; //偶数周期parameter div_o = 5'd9; //奇数周期
//*************code***********//reg [3:0] clk_cnt;reg [6:0] cyc_cnt;reg div_flag;reg clk_out_r;always@(posedge clk_in or negedge rst) beginif(~rst)clk_cnt <= 0;else if(~div_flag)clk_cnt <= clk_cnt==(div_e-1)? 0: clk_cnt+1;elseclk_cnt <= clk_cnt==(div_o-1)? 0: clk_cnt+1;endalways@(posedge clk_in or negedge rst) beginif(~rst)cyc_cnt <= 0;elsecyc_cnt <= cyc_cnt==(M_N-1)? 0: cyc_cnt+1;endalways@(posedge clk_in or negedge rst) beginif(~rst)div_flag <= 0;elsediv_flag <= cyc_cnt==(M_N-1)||cyc_cnt==(c89-1)? ~div_flag: div_flag;endalways@(posedge clk_in or negedge rst) beginif(~rst)clk_out_r <= 0;else if(~div_flag)clk_out_r <= clk_cnt<=((div_e>>2)+1);elseclk_out_r <= clk_cnt<=((div_o>>2)+1);endassign clk_out = clk_out_r;
//*************code***********//
endmodule

 在电路图当中,画触发器,就是先看时钟信号是什么,接上去,然后看复位信号是什么,接上去;再就是对应D信号,选触发器,对于<=,就是用D触发器,左侧就是输出的Q现态信号,右侧就是输入的D信号,遇到三目表达式或者else if 选择,就是选择器,选择出一个信号接到D信号上

无占空比要去的奇数分频

所谓占空比,就是在一个周期内0和1所占的比例。

以小数分频器上题为例,要实现小数分频器,在大周期里,flag在周期末以及中间某一点去更新,中间某一点就决定了什么时候反转,也决定了flag的占空比

同理在分频器中,输出分频信号什么时候反转,就是对应中间某一点,但是一定会在周期末进行反转,即cnt==分频数时。

选取中间点时,占空比是百分之五十

 

`timescale 1ns/1nsmodule odd_div (    input     wire rst ,input     wire clk_in,output    wire clk_out5
);
//*************code***********//
reg[2:0]cnt;
reg clko;
always@(posedge clk_in,negedge rst)beginif(!rst)cnt<=0;elsecnt<=cnt==4?0:cnt+1;
end
always@(posedge clk_in,negedge rst)beginif(!rst)clko<=0;elseclko<=cnt<=1;
end
assign clk_out5=clko;
//*************code***********//
endmodule

自动贩售机1

状态机

`timescale 1ns/1ns
module seller1(input wire clk  ,input wire rst  ,input wire d1 ,input wire d2 ,input wire d3 ,output reg out1,output reg [1:0]out2
);
parameter s0=0,s1=1,s2=2,s3=3,s4=4,s5=5,s6=6;
reg[2:0]cs;
reg[2:0]ns;
wire[2:0]is;
assign is={d1,d2,d3};//将输入的控制信号并在一起
always@(posedge clk,negedge rst)beginif(!rst)cs<=s0;elsecs<=ns;
endalways@(*)begincase(cs)s0:begincase(is)3'b100:ns=s1;3'b010:ns=s2;3'b001:ns=s4;default:ns=ns;endcaseends1:begincase(is)3'b100:ns=s2;3'b010:ns=s3;3'b001:ns=s5;default:ns=ns;endcaseend		s2:begincase(is)3'b100:ns=s3;3'b010:ns=s4;3'b001:ns=s6;default:ns=ns;endcaseenddefault:beginns=s0;endendcase
endalways@(posedge clk,negedge rst)beginif(!rst)beginout1<=0;out2<=0;endelse begincase(ns)s3:begin out1<=1;out2<=0;ends4:beginout1<=1;out2<=1;ends5:beginout1<=1;out2<=2;ends6:beginout1<=1;out2<=3;enddefault:beginout1<=0;out2<=0;endendcaseend
end
endmodule

自动贩售机2

sel为0买第一种饮料,为1买第二种,s3时就可以买了,不过只能买第一种

一旦能买,次态就只能是0,表示这一次付款的终止,然后找零在输出去执行

输出,只能是MEALY机,即输出与当前状态以及输入信号有关,不能是MOORE机,否则状态太多

是MEALY机就是输出一方面取决于现态,一方面取决于输入信号,这里就是SEL信号,或者可以写一个二段式,

用MOORE机的话,判断输出用次态,则不能确定到底是要买什么,需要SEL以及现态共同确定一个状态才行

`timescale 1ns/1nsmodule seller2(input wire clk  ,input wire rst  ,input wire d1 ,input wire d2 ,input wire sel ,output reg out1,output reg out2,output reg out3
);
//*************code***********//parameter S0=0, S0_5=1, S1=2, S1_5=3, S2=4, S2_5=5, S3=6;reg[2:0] state, nstate;always@(posedge clk or negedge rst) beginif(~rst)state <= 0;elsestate <= nstate;endalways@(*) begincase(state)S0     : nstate = d1? S0_5:d2? S1:nstate;S0_5   : nstate = d1? S1:d2? S1_5:nstate;S1     : nstate = d1? S1_5:d2? S2:nstate;S1_5   : nstate = ~sel? S0:d1? S2:d2? S2_5:nstate;S2     : nstate = ~sel? S0:d1? S2_5:d2? S3:nstate;default: nstate = S0;endcaseendalways@(*) beginif(~rst) begin{out1, out2, out3} = 3'b000;endelse begincase(state)S0, S0_5, S1: {out1, out2, out3} = 0;S1_5        : {out1, out2, out3} = ~sel? 3'b100: 3'b000;S2          : {out1, out2, out3} = ~sel? 3'b101: 3'b000;S2_5        : {out1, out2, out3} = ~sel? 3'b101: 3'b010;S3          : {out1, out2, out3} = ~sel? 3'b101: 3'b011;default     : {out1, out2, out3} = 3'b000;endcaseendend
//*************code***********//
endmodule

游戏机计费程序

`timescale 1ns/1nsmodule game_count
(input rst_n, //异位复位信号,低电平有效input clk, 	//时钟信号input [9:0]money,input set,input boost,output reg[9:0]remain,output reg yellow,output reg red
);always@(posedge clk or negedge rst_n) beginif(~rst_n) beginyellow <= 0;red    <= 0;endelse beginyellow <= remain<10&&remain;red    <= boost? remain<2: remain<1;endendalways@(posedge clk or negedge rst_n) beginif(~rst_n) remain <= 0;else if(boost)remain <= set     ? remain+money:remain<2? remain: remain-2;elseremain <= set     ? remain+money:remain<1? remain: remain-1;end
endmodule
`timescale 1ns/1nsmodule game_count(input rst_n, //异位复位信号,低电平有效input clk, 	//时钟信号input [9:0]money,input set,input boost,output reg[9:0]remain,output reg yellow,output reg red);always@(posedge clk or negedge rst_n)beginif(~rst_n)remain <= 0;else beginif(boost==0)remain <= set==1? remain+money: remain-1;else if(boost==1)remain <= set==1? remain+money: remain-2;endendalways@(posedge clk or negedge rst_n)beginif(~rst_n)beginyellow <= 0;red <= 0;endelse beginif(remain < 1)beginyellow <= 0;red <= 1;endelse if(remain < 10)beginyellow <= 1;red <= 0;endelse beginyellow <= 0;red <= 0;endendendendmodule

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/315753.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32L4

STM32L4系列超低功耗微控制器 意法半导体通过构建新型芯片架构实现了同类产品中最佳的超低功耗及性能&#xff0c;这得益于应用设计上的高度灵活性。 STM32L4系列可以根据微处理器运行时不同的应用需求来适时调整电压从而实现功耗的动态平衡。 该系列包含不同的产品线&#…

基于Java (spring-boot)的在线培训考试系统

一、项目介绍 在线培训系统是一款基于SpringBootVue开发的考试系统。一款多角色在线培训考试系统&#xff0c;系统集成了用户管理、角色管理、部门管理、题库管理、试题管理、试题导入导出、考试管理、在线考试、错题训练等功能&#xff0c;考试流程完善。 多角色&#xff1a;多…

docker 部署教学版本

文章目录 一、docker使用场景及常用命令1&#xff09;docker使用场景2&#xff09;rocky8(centos8)安装 docker3&#xff09;docker 常用命令补充常用命令 二、 单独部署每个镜像&#xff0c;部署spring 应用镜像推荐&#xff08;2023-12-18&#xff09;1、 安装使用 mysql1.1 …

虚幻UE 材质-边界混合之PDO像素深度偏移量

2024年的第一天&#xff01;&#xff01;&#xff01;大家新年快乐&#xff01;&#xff01;&#xff01; 可能是长大了才知道 当你过得一般 你的亲朋好友对你真正态度只可能是没有表露出来的冷嘲热讽了 希望大家新的一年平安、幸福、 永远活力满满地追求自己所想做的、爱做的&…

hubSpot有哪些功能?

HubSpot是一款综合性的市场营销、销售和服务软件平台&#xff0c;旨在帮助企业实现更有效的客户关系管理和增长。以下是HubSpot的一些主要功能&#xff1a; 市场营销自动化&#xff1a; 制定和执行多渠道的市场营销活动。 创建和管理电子邮件营销、社交媒体发布和广告活动。 …

ubuntu terminator 非常好用的护眼配置

安装 sudo apt install terminator 配置文件&#xff1a;sudo gedit ~/.config/terminator/config &#xff08;如果没有就创建&#xff09; 配置如下&#xff1a; [global_config] handle_size -3 title_transmit_fg_color "#000000" title_trans…

IIC协议之TH09传感器采样

IIC协议之TH09传感器采样 0. 写在前面1.IIC协议1.1 BSP_I2C_Start1.2 BSP_I2C_Stop1.3 BSP_I2C_waitAck1.4 BSP_I2C_Send_Byte1.5 BSP_IIC_Read_Byte 2. TH092.1 Init2.2 时序图 3.TH09 CRC4.采集结果 0. 写在前面 AT32F415TH09BSP库 实现需了解&#xff1a; 1.IIC协议的软件模…

C++面试宝典第12题:数组元素相除

题目 从控制台输入若干个整数作为数组,将数组中每一个元素除以第一个元素的结果,作为新的数组元素值。比如:可以先输入3,作为数组元素的个数;然后输入3个整数,作为数组元素的值。 解析 这道题本身并不复杂,但里面隐藏了不少“坑点”和“雷区”,主要考察应聘者全面思考问…

HTML语义化的理解

HTML语义化是指在编写HTML代码时&#xff0c;合理地选择适当的标签和属性来描述页面的结构和内容&#xff0c;使得代码更具有可读性、可维护性和可访问性。 可读性&#xff1a;通过使用语义化的标签&#xff0c;可以清晰地表达页面的结构和内容&#xff0c;使得代码更易于阅读和…

基于多元宇宙算法优化的Elman神经网络数据预测 - 附代码

基于多元宇宙算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于多元宇宙算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于多元宇宙优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&…

【工具】vscode搜索结果及工程目录的文件夹、文件的排除

&#x1f41a;作者简介&#xff1a;花神庙码农&#xff08;专注于Linux、WLAN、TCP/IP、Python等技术方向&#xff09;&#x1f433;博客主页&#xff1a;花神庙码农 &#xff0c;地址&#xff1a;https://blog.csdn.net/qxhgd&#x1f310;系列专栏&#xff1a;善假于物&#…

windows2012 安装mysql5.7

windows2012 安装mysql5.7 1.安装1.解压文件夹2.把my文件拷入没有sql安装目录3.编辑my文件4.按照下方进行配置5.cmd进入bin目录6.出现丢失文件7.安装这个文件即可解决8.开始进行安装&#xff0c;输入mysqld install9.初始化mysql&#xff08;mysqld --initialize --console&…