从零开始 - 在Python中构建和训练生成对抗网络(GAN)模型

生成对抗网络(GANs)是一种强大的生成模型,可以合成新的逼真图像。通过完整的实现过程,读者将对GANs在幕后的工作原理有深刻的理解。本教程首先导入必要的库并加载将用于训练GAN的Fashion-MNIST数据集。然后,提供了构建GAN核心组件(生成器和判别器模型)的代码示例。接下来的部分解释了如何构建一个组合模型,该模型训练生成器以欺骗判别器,以及如何设计一个训练函数来优化对抗过程。

目录:

1. 导入库和下载数据集

2. 构建生成器模型

3. 构建判别器模型

4. 构建组合模型

5. 构建训练函数

6. 训练和观察结果

  1. 导入库和下载数据集

让我们首先导入本文中将使用的重要库:

from __future__ import print_function, division
from keras.datasets import fashion_mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import numpy as np
import matplotlib.pyplot as plt

在本文中,您将在Fashion-MNIST数据集上训练DCGAN。Fashion-MNIST包含60,000个用于训练的灰度图像和一个包含10,000个图像的测试集。每个28×28的灰度图像与10个类别中的一个标签相关联。Fashion-MNIST旨在作为原始MNIST数据集的直接替代品,用于对比机器学习算法的性能。与三通道的彩色图像相比,灰度图像在一通道上训练卷积网络时需要更少的计算能力,这使您更容易在没有GPU的个人计算机上进行训练。

a43e74d2137f4a31ce4d40fe66ab7a52.jpeg

数据集分为10个时尚类别。类别标签如下:

760b0174d7592e71606bec49bf3407a5.jpeg

您可以使用以下代码加载数据集:

(training_data, _), (_, _) = fashion_mnist.load_data()
X_train = training_data / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)

要可视化数据集中的图像,可以使用以下代码:

def visualize_input(img, ax):ax.imshow(img, cmap='gray')width, height = img.shapethresh = img.max()/2.5for x in range(width):for y in range(height):ax.annotate(str(round(img[x][y],2)), xy=(y,x),horizontalalignment='center',verticalalignment='center',color='white' if img[x][y]<thresh else="" 'black')=""  =""  
fig = plt.figure(figsize = (12,12))
ax = fig.add_subplot(111)
visualize_input(training_data[3343], ax)We also use batch normalization and a ReLU activation.
For each of these layers, the general scheme is convolution ⇒ batch normalization
⇒ ReLU. We keep stacking up layers like this until we get the final transposed
convolution layer with shape 28 × 28 × 1:

b001bcb6986483ef65aa3f19ef9b657e.jpeg

2. 构建生成器模型

正如我们在前面的文章中所探讨的,GANs由两个主要组件组成,即生成器和判别器。在这一部分中,我们将构建生成器模型,其输入将是一个噪声向量(z)。生成器的架构如下图所示。

第一层是一个全连接层,然后被重新塑造成深而窄的层,在原始的DCGAN论文中,作者将输入重新塑造为4×4×1024。在这里,我们将使用7×7×128。然后,我们使用上采样层将特征映射的维度从7×7加倍到14×14,然后再次加倍到28×28。在这个网络中,我们使用了三个卷积层。我们还将使用批归一化和ReLU激活。

对于每个层,通用方案是卷积 ⇒ 批归一化 ⇒ ReLU。我们不断地堆叠这样的层,直到得到最终的转置卷积层,形状为28×28×1。

4fabaa16f62175b0c474ff334293c279.jpeg

以下是构建上述生成器模型的Keras代码:

def build_generator():generator = Sequential()generator.add(Dense(6272, activation="relu", input_dim=100)) # Add dense layergenerator.add(Reshape((7, 7, 128)))  # reshape the imagegenerator.add(UpSampling2D()) # Upsampling layer to double the size of the imagegenerator.add(Conv2D(128, kernel_size=3, padding="same", activation="relu"))generator.add(BatchNormalization(momentum=0.8))generator.add(UpSampling2D())# convolutional + batch normalization layersgenerator.add(Conv2D(64, kernel_size=3, padding="same", activation="relu"))generator.add(BatchNormalization(momentum=0.8))# convolutional layer with filters = 1generator.add(Conv2D(1, kernel_size=3, padding="same", activation="relu"))generator.summary() # prints the model summary"""We don't add upsampling here because the image size of 28 × 28 is equal to the image size in the MNIST dataset. You can adjust this for your own problem."""noise = Input(shape=(100,))fake_image = generator(noise)# Returns a model that takes the noise vector as an input and outputs the fake imagereturn Model(inputs=noise, outputs=fake_image)

3. 构建判别器模型

GANs的第二个主要组件是判别器。判别器只是一个传统的卷积分类器。判别器的输入是28×28×1的图像。我们希望有一些卷积层,然后是输出的全连接层。

与之前一样,我们希望得到一个Sigmoid输出,并且我们需要返回logits。对于卷积层的深度,我们可以从第一层开始使用32或64个过滤器,然后在添加层时将深度加倍。在这个实现中,我们将从64层开始,然后是128,然后是256。对于降采样,我们不使用池化层。相反,我们只使用步幅卷积层进行降采样,类似于Radford等人的实现。

我们还使用批归一化和dropout来优化训练。对于四个卷积层的每一层,通用方案是卷积 ⇒ 批归一化 ⇒ 泄漏的ReLU。

c99ea77aec1203923646688e02c6e1d6.jpeg

现在,让我们构建build_discriminator函数:

def build_discriminator():discriminator = Sequential()discriminator.add(Conv2D(32, kernel_size=3, strides=2, input_shape=(28,28,1), padding="same"))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Conv2D(64, kernel_size=3, strides=2,padding="same"))discriminator.add(ZeroPadding2D(padding=((0,1),(0,1))))discriminator.add(BatchNormalization(momentum=0.8))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))discriminator.add(BatchNormalization(momentum=0.8))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))discriminator.add(BatchNormalization(momentum=0.8))discriminator.add(LeakyReLU(alpha=0.2))discriminator.add(Dropout(0.25))discriminator.add(Flatten())discriminator.add(Dense(1, activation='sigmoid'))img = Input(shape=(28,28,1))probability = discriminator(img)return Model(inputs=img, outputs=probability)

4. 构建组合模型

正如本系列的第二篇文章中所解释的,为了训练生成器,我们需要构建一个包含生成器和判别器的组合网络。组合模型以噪声信号(z)作为输入,并将判别器的预测输出作为虚假或真实输出。

e90e9c2335ae20998fab73b192b20485.jpeg

重要的是要记住,我们希望在组合模型中禁用判别器的训练,正如本系列的第二篇文章中所解释的那样。在训练生成器时,我们不希望判别器更新权重,但我们仍然希望将判别器模型包含在生成器训练中。因此,我们创建一个包含两个模型的组合网络,但在组合网络中冻结判别器模型的权重:

optimizer = Adam(learning_rate=0.0002, beta_1=0.5)
discriminator = build_discriminator()
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
discriminator.trainable = False# Build the generator
generator = build_generator()
z = Input(shape=(100,))
img = generator(z)
valid = discriminator(img)
combined = Model(inputs=z, outputs=valid)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)

5. 构建训练函数

为了训练GAN模型,我们训练两个网络:判别器和我们在前面部分创建的组合网络。让我们构建train函数,该函数接受以下参数:

  • epoch

  • batch size 大小

  • save_interval,以指定多久保存一次结果

def train(epochs, batch_size=128, save_interval=50):valid = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))for epoch in range(epochs):  # Train Discriminator networkidx = np.random.randint(0, X_train.shape[0], batch_size)imgs = X_train[idx]noise = np.random.normal(0, 1, (batch_size, 100))gen_imgs = generator.predict(noise)d_loss_real = discriminator.train_on_batch(imgs, valid)d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)g_loss = combined.train_on_batch(noise, valid)# printing progressprint("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %(epoch, d_loss[0], 100*d_loss[1], g_loss))if epoch % save_interval == 0:plot_generated_images(epoch, generator)

我们还将创建另一个函数`plot_generated_images()` 来绘制生成的图像。

def plot_generated_images(epoch, generator, examples=100, dim=(10, 10),figsize=(10, 10)):noise = np.random.normal(0, 1, size=[examples, latent_dim])generated_images = generator.predict(noise)generated_images = generated_images.reshape(examples, 28, 28)plt.figure(figsize=figsize)for i in range(generated_images.shape[0]):plt.subplot(dim[0], dim[1], i+1)plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')plt.axis('off')plt.tight_layout()plt.savefig('gan_generated_image_epoch_%d.png' % epoch

最后,让我们为训练GAN模型定义重要的变量和参数:

# Input shape
img_shape = (28,28,1)
channels = 1
latent_dim = 100
optimizer = Adam(0.0002, 0.5)# Build and compile the discriminator
discriminator = build_discriminator()
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Build the generator
generator = build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(latent_dim,))
img = generator(z)
# For the combined model we will only train the generator
discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
valid = discriminator(img)
# The combined model  (stacked generator and discriminator)
# Trains the generator to fool the discriminator
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)

6. 训练和观察结果

此时,代码实现已经完成,我们准备开始DCGAN的训练。要训练模型,请运行以下代码行:

train(epochs=1000, batch_size=32, save_interval=50)

这将在1,000个epochs上运行训练,并每50个epochs保存一次图像。当运行`train()` 函数时,训练进度将如下所示:

86d990d67af3b9ee259b9424b3e1e521.jpeg

如下图所示,在epoch = 0时,图像只是随机噪声,没有明确的模式或有意义的数据。到了第50个epoch,图案已经开始形成。

80fb00ada0dc22c60488b9d4fda559aa.jpeg

在训练过程的后期,到了第1,000个epoch,您可以看到清晰的形状,可能能够猜测输入到GAN模型的训练数据的类型。

49de38a46bd9065cb03bb8125b1a990e.jpeg

再快进到第10,000个epoch,您会发现生成器已经非常擅长重新创建训练数据集中不存在的新图像。

de6db2898ea32036dd85c216a275c842.jpeg

·  END  ·

HAPPY LIFE

aeccadbe0b4d2dc12a3db6eea9e70b49.png

本文仅供学习交流使用,如有侵权请联系作者删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/315948.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一文了解VR全景技术如何运用在景区旅游宣传

引言&#xff1a; 随着科技的飞速发展&#xff0c;虚拟现实全景技术&#xff08;VR全景&#xff09;正在逐步改变我们的生活。这种技术以其独特的优势&#xff0c;逐步渗透到各个领域&#xff0c;尤其在景区宣传方面&#xff0c;VR全景技术拥有很强的应用潜力。 一、了解VR全景…

vr眼镜和AR眼镜的区别有哪些?哪些产品可以支持VR应用?

vr眼镜怎么连接手机 要将VR眼镜连接到手机上&#xff0c;您可以按照以下步骤进行&#xff1a; 1. 确保您的手机支持VR应用程序&#xff1a;首先&#xff0c;确保您的手机具备运行VR应用程序的硬件和软件条件。一些VR应用程序可能对设备有特定的要求&#xff0c;如处理器性能、操…

Linux安装rabbitMq RPM安装 以及带延迟插件

rabbitmq安装 文档中rabbitmq下载链接 以及延迟插件 网盘下载 目前下载文件中版本已经过多个服务器安装测试 完全成功 1.安装执行 rpm -ivh openssl-libs-1.0.2k-19.el7.x86_64.rpm --force --nodeps rpm -ivh libnsl-2.34-28.el9_0.x86_64.rpm --force --nodeps rpm -ivh e…

【实用工具】FFmpeg常用的命令

前言 FFmpeg是一个强大的多媒体处理工具&#xff0c;可以用于处理音频、视频和图像。 命令格式 ffmpeg {1} {2} -i {3} {4} {5} 上面命令中&#xff0c;五个部分的参数依次如下。 1.全局参数 2.输入文件参数 3.输入文件 4.输出文件参数 5.输出文件 常见命令行参数 -c&…

LanChatRoom局域网聊天室

CPP已经结课&#xff0c;我提交的项目是Qt的入门项目&#xff0c;局域网聊天室LanChatRoom。 这个代码重构了很多遍。第一遍是照着明哥推荐到书&#xff0c;把代码抄了一遍。 但抄下来之后&#xff0c;各种问题&#xff0c;而且是清朝老代码。抄了一遍之后&#xff0c;对代码的…

二叉树的前序遍历 、二叉树的最大深度、平衡二叉树、二叉树遍历【LeetCode刷题日志】

目录 一、二叉树的前序遍历 方法一&#xff1a;全局变量记录节点个数 方法二&#xff1a;传址调用记录节点个数 二、二叉树的最大深度 三、平衡二叉树 四、二叉树遍历 一、二叉树的前序遍历 方法一&#xff1a;全局变量记录节点个数 计算树的节点数: 函数TreeSize用于…

IIS通过ARR实现负载均衡

一、实现整体方式介绍 项目中部署在windows服务器上的项目,需要部署负载均衡,本来想用nginx来配置的,奈何iis上有几个项目,把80端口和443端口占用了,nginx就用不了了(因为通过域名访问的,必须要用80和443端口),只能通过IIS的方式实现了。 这里用2个服务在一台机器上…

Flutter 混合开发 - 动态下发 libflutter.so libapp.so

背景 最近在做包体积优化&#xff0c;在完成代码混淆、压缩&#xff0c;裁剪ndk支持架构&#xff0c;以及资源压缩&#xff08;如图片转webp、mp3压缩等&#xff09;后发现安装包的中占比较大的仍是 so 动态库依赖。 具体查看发现 libflutter.so 和 libapp.so 的体积是最大的&…

nccl 源码安装与应用示例 附源码

1&#xff0c; 官方下载网址 注意&#xff0c;本文并不使用nv预编译的包来安装&#xff0c;仅供参考&#xff1a; NVIDIA Collective Communications Library (NCCL) | NVIDIA Developer 2&#xff0c;github网址 这里是nv开源的nccl源代码&#xff0c;功能完整&#xff0c;不…

侯捷C++ 2.0 新特性

关键字 nullptr and std::nullptr_t auto 一致性初始化&#xff1a;Uniform Initialization 11之前&#xff0c;初始化方法包括&#xff1a;小括号、大括号、赋值号&#xff0c;这让人困惑。基于这个原因&#xff0c;给他来个统一&#xff0c;即&#xff0c;任何初始化都能够…

C#编程-使用条件构造

使用条件构造 作判定是人的基本能力。判定也是可收编进程序。这有助于确定程序执行指令的顺序。 您可用条件构造来控制程序的流程。条件构造允许您基于被求职的表达式的结果来执行选定语句。 可以包含在C#程序中的各种条件构造是: if…else 构造switch…case 构造if…else构…

git 如何撤销历史某次merge

git&#xff0c;如何 撤销某一次历史提交或merge&#xff0c;并保留该版本的后续提交&#xff1f; 场景1&#xff1a; 你有两个功能迭代版本的分支&#xff0c;一个是 15 号上线&#xff0c;一个是25号上线。5号的时候产品突然说&#xff0c;这两个版本一起上&#xff0c;然后…