机器学习-基于Word2vec搜狐新闻文本分类实验

机器学习-基于Word2vec搜狐新闻文本分类实验

实验介绍

Word2vec是一群用来产生词向量的相关模型,由Google公司在2013年开放。Word2vec可以根据给定的语料库,通过优化后的训练模型快速有效地将一个词语表达成向量形式,为自然语言处理领域的应用研究提供了新的工具。
Word2vec模型为浅而双层的神经网络,网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示词对词之间的关系,该向量为神经网络之隐藏层。

实验要求

本实验主要基于Word2vec来实现对搜狐新闻文本分类,大致步骤如下。

1.数据准备

数据集下载地址 密码: hq5v

训练集共有24000条样本,12个分类,每个分类2000条样本。
测试集共有12000条样本,12个分类,每个分类1000条样本。

2.word2vec模型(可以使用Word2Vec原代码库)

完成此步骤需要先安装gensim库,安装命令:pip install gensim

3.特征工程

对于每一篇文章,获取文章的每一个分词在word2vec模型的相关性向量。然后把一篇文章的所有分词在word2vec模型中的相关性向量求和取平均数,即此篇文章在word2vec模型中的相关性向量。

实验代码及结果展示

import pandas as pd
import jieba
import time
from gensim.models import Word2Vec
import warnings
train_df = pd.read_csv('sohu_train.txt', sep='\t', header=None)
train_df.head()
for name, group in train_df.groupby(0):print(name,len(group))test_df = pd.read_csv('sohu_test.txt', sep='\t', header=None)
for name, group in test_df.groupby(0):print(name, len(group))train_df.columns = ['分类', '文章']
stopword_list = [k.strip() for k in open('stopwords.txt', encoding='utf8').readlines() if k.strip() != '']
cutWords_list = []
i = 0
startTime = time.time()
for article in train_df['文章']:cutWords = [k for k in jieba.cut(article) if k not in stopword_list]i += 1if i % 1000 == 0:print('前%d篇文章分词共花费%.2f秒' % (i, time.time() - startTime))cutWords_list.append(cutWords)with open('cutWords_list.txt', 'w') as file:for cutWords in cutWords_list:file.write(' '.join(cutWords) + '\n')with open('cutWords_list.txt') as file:cutWords_list = [k.split() for k in file.readlines()]word2vec_model = Word2Vec(cutWords_list, size=100, iter=10, min_count=20)warnings.filterwarnings('ignore')word2vec_model.wv.most_similar('摄影')word2vec_model.most_similar(positive=['女人', '先生'], negative=['男人'], topn=1)word2vec_model.save('word2vec_model.w2v')
import numpy as np 
import time def getVector_v1(cutWords, word2vec_model):count = 0article_vector = np.zeros(word2vec_model.layer1_size)for cutWord in cutWords:if cutWord in word2vec_model:article_vector += word2vec_model[cutWord]count += 1return article_vector / countstartTime = time.time()
vector_list = []
i = 0
for cutWords in cutWords_list[:5000]:i += 1if i % 1000 ==0:print('前%d篇文章形成词向量花费%.2f秒' %(i, time.time()-startTime))vector_list.append(getVector_v1(cutWords, word2vec_model))
X = np.array(vector_list)

结果展示

1
2

用numpy的mean方法计算


import time
import numpy as npdef getVector_v3(cutWords, word2vec_model):vector_list = [word2vec_model[k] for k in cutWords if k in word2vec_model]cutWord_vector = np.array(vector_list).mean(axis=0)return cutWord_vectorstartTime = time.time()
vector_list = []
i = 0
for cutWords in cutWords_list[:5000]:i += 1if i % 1000 ==0:print('前%d篇文章形成词向量花费%.2f秒' %(i, time.time()-startTime))vector_list.append(getVector_v3(cutWords, word2vec_model))
X = np.array(vector_list)

结果展示

1

逻辑回归模型

调用sklearn.linear_model库的LogisticRegression方法实例化模型对象。
调用sklearn.model_selection库的train_test_split方法划分训练集和测试集。


from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_splittrain_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2)
logistic_model = LogisticRegression()
logistic_model.fit(train_X, train_y)
logistic_model.score(test_X, test_y)
结果为:0.7825
5.模型测试
import pandas as pd
import numpy as np
from sklearn.externals import joblib
import jieba def getVectorMatrix(article_series):return np.array([getVector_v3(jieba.cut(k), word2vec_model) for k in article_series])logistic_model = joblib.load('logistic.model')
test_df = pd.read_csv('sohu_test.txt', sep='\t', header=None)
test_df.columns = ['分类', '文章']
for name, group in test_df.groupby('分类'):featureMatrix = getVectorMatrix(group['文章'])target = labelEncoder.transform(group['分类'])
print(name, logistic_model.score(featureMatrix, target))

结果展示

1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/316342.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[概率论]四小时不挂猴博士

贝叶斯公式是什么 贝叶斯公式是概率论中的一个重要定理,用于计算在已知一些先验信息的情况下,更新对事件发生概率的估计。贝叶斯公式的表达式如下: P(A|B) P(B|A) * P(A) / P(B) 其中,P(A|B)表示在事件B发生的条件下事件A发生的概…

大文件断点下载Range下载zip包显示文件损坏

问题:大文件下载,其它格式的文件及rar格式的压缩包正常下载但是 之后zip包下载后解压失败 原因分析: 1. 查看上传文件的属性值 如图,10.4kb是已经约去小数点的值,准确的大小应该是10663字节10.4130859375KB,所以用10.…

云原生十二问

一、什么是云原生? 云原生是在云计算环境中构建、部署和管理现代应用程序的软件方法。现代企业希望构建高度可扩展、灵活且具有弹性的应用程序,可以快速更新以满足客户需求。为此,他们使用现代工具和技术,这些工具和技术本质上支…

python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏) 毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总 🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题&#xff…

挑战 ChatGPT 和 Google Bard 的防御

到目前为止,科学家已经创建了基于人工智能的聊天机器人,可以帮助内容生成。我们还看到人工智能被用来创建像 WormGPT 这样的恶意软件,尽管地下社区对此并不满意。但现在正在创建聊天机器人,可以使用生成人工智能通过即时注入活动来…

Nginx - 使用error_page实现带有图片的自定义错误页面

文章目录 概述官网文档需求实现 概述 在Nginx中,您可以使用error_page指令来指定当请求遇到特定错误时应当显示的自定义错误页面。为了实现带有图片的自定义错误页面,可以按照以下步骤操作: 创建错误页面: 首先,需要…

每天刷两道题——第三天

1.1两两交换链表中的节点 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换) 输入:[1,2,3,4] 输出:[2,1,4,3…

‘vue-cli-service‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。这个问题如何解决?

这个错误信息 vue-cli-service 不是内部或外部命令,也不是可运行的程序或批处理文件 表示 vue-cli-service 命令在你的系统上未被识别。这通常是因为 Vue CLI 没有被正确安装或其路径没有被加入到系统的环境变量中。以下是几个解决这个问题的步骤: 确认 …

Oracle 日志路径查询介绍

数据库日志分析详解:  ORACEL RAC 体系架构分析  Oracle RAC 包含GI(Grid Infrastructure) 集群软件与Oracle数据库组成。  GI包含两个最主要的组件:Clusterware集群软件和ASM存储软件,这两个软件提供数据库高可用能力。  …

自然语言处理24-T5模型的介绍与训练过程,利用简单构造数据训练微调该模型,体验整个过程

大家好,我是微学AI,今天给大家介绍一下自然语言处理24-T5模型的介绍与训练过程,利用简单构造数据训练微调该模型,体验整个过程。在大模型ChatGPT发布之前,NLP领域是BERT,T5模型为主导,T5(Text-to-Text Transfer Transformer)是一种由Google Brain团队在2019年提出的自然…

【计算机毕业设计】SSM汽车维修预约平台

项目介绍 本项目分为前后台,前台为普通用户登录,后台为管理员登录; 管理员角色: 管理员登录,新增管理员信息,查看管理员信息,查询管理员信息,查看用户信息列表,查询用户信息,新增新闻公告,查看新闻公告,查询新闻公告,新增配件类…

数据结构与算法python版本之线性结构之无序表抽象数据类型有序链表抽象数据类型和总结

我们知道,列表List是一种简单强大的数据集结构,提供了丰富的操作接口;但是并不是所有的编程语言都提供了List数据类型,有时候需要程序员自己实现。 那么什么是列表呐? 列表是一种数据项按照相对位置存放的数据集&…