深度强化学习DQN训练避障

目录

一.前言

二.代码

2.1完整代码

2.2运行环境

2.3动作空间

2.4奖励函数

2.5状态输入

2.6实验结果


一.前言

深度Q网络(DQN)是深度强化学习领域的一项革命性技术,它成功地将深度学习的强大感知能力与强化学习的决策能力相结合。在过去的几年里,DQN已经在许多复杂的问题上展示了其卓越的性能,从经典的Atari游戏到更复杂的机器人控制任务。特别值得一提的是,DQN在处理高维状态空间和动作空间的问题时表现出了显著的优势,使得它能够处理传统强化学习方法难以解决的难题。

二维环境避障问题是强化学习领域的一个经典问题,它要求智能体在二维空间中移动,同时避免与障碍物碰撞。这个问题看似简单,但实际上涉及到了许多复杂的因素,如环境的不确定性、部分可观察性、以及智能体的感知和决策能力限制等。因此,开发一种能够有效解决二维环境避障问题的方法具有重要的实际意义和应用价值。

近年来,随着深度学习和强化学习技术的不断发展,基于DQN的二维环境避障方法已经取得了显著的进展。通过利用深度学习的强大特征提取能力,DQN能够从原始的环境状态中学习到有用的特征表示,并基于这些特征进行高效的决策。此外,DQN还引入了经验回放和目标网络等关键技术,进一步提高了算法的稳定性和收敛速度。

本文研究如何让智能体在一个二维障碍物环境中进行避障。

二.代码

2.1完整代码

import gym  
import torch,copy
import torch.nn as nn
import torch.nn.functional as F
import numpy as np  
from gym import spaces  
from gym.utils import seeding  
import matplotlib.pyplot as plt  
#超参数
BATCH_SIZE = 32
LR = 0.01
EPSILON = 0.9 #随机选取的概率,如果概率小于这个随机数,就采取greedy的行为
GAMMA = 0.9
TARGET_REPLACE_ITER = 100
MEMORY_CAPACITY = 2000
N_ACTIONS=len(np.arange(0, 2*np.pi, 0.1))
N_STATES=4
ENV_A_SHAPE =0
class Net(nn.Module):def __init__(self, ):super(Net, self).__init__()self.fc1 = nn.Linear(N_STATES, 500)self.fc1.weight.data.normal_(0, 0.1)   # initializationself.out = nn.Linear(500, N_ACTIONS)self.out.weight.data.normal_(0, 0.1)   # initializationdef forward(self, x):x = self.fc1(x)x = F.relu(x)actions_value = self.out(x)return actions_value
class DQN(object):def __init__(self):#DQN是Q-Leaarning的一种方法,但是有两个神经网络,一个是eval_net一个是target_net#两个神经网络相同,参数不同,是不是把eval_net的参数转化成target_net的参数,产生延迟的效果self.eval_net=Net()self.target_net =copy.deepcopy(self.eval_net)self.learn_step_counter = 0 #学习步数计数器self.memory_counter = 0 #记忆库中位值的计数器self.memory = np.zeros((MEMORY_CAPACITY,N_STATES * 2 + 2)) #初始化记忆库#记忆库初始化为全0,存储两个state的数值加上一个a(action)和一个r(reward)的数值self.optimizer = torch.optim.Adam(self.eval_net.parameters(),lr = LR)self.loss_func = nn.MSELoss() #优化器和损失函数    #接收环境中的观测值,并采取动作def choose_action(self,x):global EPSILON#x为观测值x = torch.unsqueeze(torch.FloatTensor(x),0)if np.random.uniform() < EPSILON:#随机值得到的数有百分之九十的可能性<0.9,所以该if成立的几率是90%#90%的情况下采取actions_value高的作为最终动作actions_value = self.eval_net.forward(x)action = torch.max(actions_value,1)[1].data.numpy()action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) # return the argmax indexelse:#其他10%采取随机选取动作action = np.random.randint(0,N_ACTIONS) #从动作中选一个动作action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)return action    #记忆库,存储之前的记忆,学习之前的记忆库里的东西def store_transition(self,s,a,r,s_):transition = np.hstack((s, [a, r], s_))# 如果记忆库满了, 就覆盖老数据index = self.memory_counter % MEMORY_CAPACITYself.memory[index, :] = transitionself.memory_counter += 1def learn(self):# target net 参数更新,每隔TARGET_REPLACE_ITE更新一下if self.learn_step_counter % TARGET_REPLACE_ITER == 0:self.target_net.load_state_dict(self.eval_net.state_dict())self.learn_step_counter += 1#targetnet是时不时更新一下,evalnet是每一步都更新# 抽取记忆库中的批数据sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)b_memory = self.memory[sample_index, :] #打包记忆,分开保存进b_s,b_a,b_r,b_sb_s = torch.FloatTensor(b_memory[:, :N_STATES])b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int))b_r = torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2])b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:])# 针对做过的动作b_a, 来选 q_eval 的值, (q_eval 原本有所有动作的值)q_eval = self.eval_net(b_s).gather(1, b_a)  # shape (batch, 1)q_next = self.target_net(b_s_).detach()     # q_next 不进行反向传递误差, 所以 detachq_target = b_r + GAMMA * q_next.max(1)[0]   # shape (batch, 1)loss = self.loss_func(q_eval, q_target)# 计算, 更新 eval netself.optimizer.zero_grad()loss.backward() #误差反向传播self.optimizer.step()class RobotEnv(gym.Env):  metadata = {'render.modes': ['human']}  def __init__(self):  super(RobotEnv, self).__init__()  self.grid_size = 1000  self.viewobs = np.zeros((self.grid_size, self.grid_size))  self.robot_radius = 10  self.obstacle_radius = 50  self.robot_pos = np.array([self.grid_size // 8, self.grid_size // 2])  self.obstacle_pos = np.array([self.grid_size *3// 4, self.grid_size // 2])  self.target_pos = np.array([self.grid_size *7 // 8, self.grid_size // 2])  self.action_space =np.arange(0, 2*np.pi, 0.1)  self.observation_space = spaces.Box(low=0, high=1, shape=(self.grid_size, self.grid_size))  self._seed()  def _reset(self):self.robot_pos = np.array([self.grid_size  // 8, self.grid_size // 2])  self.obstacle_pos = np.array([self.grid_size *3// 4, self.grid_size // 2])  self.observation_space = spaces.Box(low=0, high=1, shape=(self.grid_size, self.grid_size))  return self._get_obs()def _seed(self, seed=None):  self.np_random, seed = seeding.np_random(seed)  return [seed]  def _step(self, action):  angle = action*0.1  dx = self.robot_radius * np.cos(angle)  dy = self.robot_radius * np.sin(angle)  new_pos = self.robot_pos + np.array([dx, dy])  if np.linalg.norm(new_pos - self.obstacle_pos) <= self.obstacle_radius:  reward = -1done = True  elif self.robot_pos[0]<=self.robot_radius+self.robot_radius or self.robot_pos[0]>=self.grid_size-self.robot_radius-self.robot_radius:reward=-1done = True  elif self.robot_pos[1]<=self.robot_radius+self.robot_radius or self.robot_pos[1]>=self.grid_size-self.robot_radius-self.robot_radius:reward=-1done = True  else:  reward = 1 / (1 + np.linalg.norm(new_pos - self.target_pos))  done = False  self.robot_pos = new_pos  return self._get_obs(), reward, done, {}  def _get_obs(self):  self.viewobs = np.zeros((self.grid_size, self.grid_size))  self.viewobs[int(self.robot_pos[0])][int(self.robot_pos[1])] = 1.0self.viewobs[int(self.obstacle_pos[0] - self.obstacle_radius):int(self.obstacle_pos[0] + self.obstacle_radius),   int(self.obstacle_pos[1] - self.obstacle_radius):int(self.obstacle_pos[1] + self.obstacle_radius)] = 0.5  obs=[self.robot_pos[0],self.robot_pos[1],self.obstacle_pos[0],self.obstacle_pos[1]]return obsdef _render(self, mode='human', close=False):  if close:  return  plt.imshow(self.viewobs, cmap='gray')  plt.scatter(self.robot_pos[1], self.robot_pos[0], c='red')  plt.scatter(self.obstacle_pos[1], self.obstacle_pos[0], c='blue')  plt.xlim([0, self.grid_size])  plt.ylim([0, self.grid_size])  #plt.show()  plt.pause(0.01)  plt.clf()  if __name__ == "__main__":  env = RobotEnv()  dqn = DQN()#for i in range(400000):i=0while True:s=env.reset()for j in range(300):  # Run for 100 steps as an example  action  = dqn.choose_action(s) s_, reward, done, info = env.step(action)  print(i)if i>=200000:env.render()  dqn.store_transition(s,action,reward,s_)if dqn.memory_counter > MEMORY_CAPACITY:dqn.learn()if done:  print("Episode finished after {} timesteps".format(i+1))  breaks = s_ # 现在的状态赋值到下一个状态上去i=i+1

2.2运行环境

gym== 0.7.0

torch==2.1.1

2.3动作空间

    在深度强化学习领域中,动作空间的设计对于智能体的决策能力和学习效果具有至关重要的影响。针对连续动作空间的问题,一种常见的处理方式是将其离散化,以便应用离散动作空间的强化学习算法。本实验提出了一种将0-2π的连续动作空间等分为63个离散动作的方法。

    通过采用等分为63个离散动作的策略。使得实验在保留了足够的动作分辨率的同时,避免了过度离散化可能带来的维度灾难问题。通过将动作空间划分为足够细密的离散区间,智能体能够更精确地控制自身的行为,从而在面对复杂环境时实现更好的性能。

2.4奖励函数

在本研究中,我们设计的奖励函数主要基于两个核心原则:

  1. 靠近障碍物的奖励:当智能体靠近障碍物后方时,将获得一个与距离大小成反比的奖励值。具体而言,随着智能体逐渐接近障碍物,奖励值将逐渐增大,以鼓励智能体保持与障碍物的安全距离。这种设计策略旨在通过提供即时的正反馈来促使智能体学习避免与障碍物发生碰撞的行为。
  2. 违反仿真边界或进入障碍物区域的惩罚:一旦智能体离开仿真边界或进入障碍物区域,将获得一个负奖励(惩罚),并且仿真将立即停止。这种严厉的惩罚机制确保了智能体能够清晰地认识到这些行为的不可取性,从而在学习过程中避免重复犯下相同的错误。

2.5状态输入

    在本研究中,我们将智能体的当前位置以及障碍物的位置信息作为状态输入。具体来说,状态空间包括智能体的二维坐标和障碍物的二维坐标。这样的设计使得智能体能够直接感知到周围环境的信息,并根据这些信息做出相应的决策。

2.6实验结果

    无论是在静态还是动态环境中,智能体都能够准确地感知到障碍物的存在,并有效地规划出避开障碍物的路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/316639.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浏览器请求的并行与串行以及并发数的管控

1 浏览器在发起网络请求数据的时候&#xff0c;允许同时请求5-7个接口。即使我们同时请求20个接口&#xff0c; 浏览器也只会优先请求5-7个&#xff0c;当5-7个有请求成功或失败的接口之后&#xff0c;在进行下一个填充请 求&#xff0c;一直到所有的接口请求完…

【QT 自研上位机 与 ESP32下位机联调>>>串口控制GPIO-基础样例-联合文章】

【QT 自研上位机 与 ESP32下位机联调&#xff1e;&#xff1e;&#xff1e;串口控制GPIO-基础样例-联合文章】 1、概述2、实验环境3、 自我总结4、 实验过程1、验证上位机QT程序1、下载样例代码2、修改qt程序3、运行测试验证 2、验证下位机ESP32程序1、下载样例代码2、更改ESP3…

【测试基础】构造测试数据之 MySQL 篇

构造测试数据之 MySQL 篇 作为一名测试工程师&#xff0c;我们经常会构造测试数据进行一些功能验证。为了暴露更多的问题&#xff0c;在测试数据的构造上&#xff0c;我们应该尽可能的构造不同类型字段的数据&#xff0c;且一张表的字段最好不低于 10 10 10 个。 对于 MySQL …

【Linux Shell】1. Shell 简述

文章目录 【 1. Shell 解释器、Shell语言、Shell脚本 】【 2. Shell 环境 】【 3. 一个简单的 Shell 脚本 】3.1 Shell 脚本的编写3.2 Shell 脚本的运行3.2.1 作为可执行程序运行 Shell 脚本3.2.2 作为解释器参数运行 Shell 脚本 【 1. Shell 解释器、Shell语言、Shell脚本 】 …

基于ssm的医院交互系统+vue论文

医院交互系统的设计与实现 摘要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。传统的医院交互信息管理模式&#xff0c;采用人工登记的方式保存相关数据&#xff0c;这种以人力为主的管理模…

山海鲸可视化软件的优势:数据整合、可视化与个性化定制

随着科技的快速发展&#xff0c;企业数字化转型已成为必然趋势。而对于一些本身没有开发优势或非技术型企业&#xff0c;数字化产品的选择就成为重中之重。作为山海鲸可视化软件的开发者&#xff0c;我们深知这一点&#xff0c;对于企业来说&#xff0c;能选择一个产品一定要有…

ARM CCA机密计算架构软件栈之软件组件介绍

在本节中,您将了解Arm CCA的软件组件,包括Realm World和Monitor Root World。以下图表展示了Arm CCA系统中的软件组件: 在这个图表中,世界之间的边界显示为粗虚线。由较高权限的软件强制执行的较低权限软件组件之间的边界显示为细虚线。例如,非安全EL2处的虚拟机监视器强制…

【AIGC-图片生成视频系列-6】SSR-Encoder:用于主题驱动生成的通用编码器

目录 一. 贡献概述 二. 方法详解 a) 训练阶段 b) 推理生成阶段&#xff1a; 三. 综合结果 四. 注意力可视化 五. 选择性主题驱动图像生成 六. 人体图像生成 七. 可推广到视频生成模型 八. 论文 九. 个人思考 稳定扩散&#xff08;Stable Diffusion&#xff09;模型可…

java常用数据结构

List&#xff1a;ArrayList 和 LinkedList 1、ArrayList 和 LinkedList都是非线程安全 2、ArrayList 可以直接根据下表定位元素&#xff0c;查找速度快&#xff0c;但是修改元素慢&#xff1b;LinkedList 查找元素必须从第一个开始逐个查找&#xff0c;查找速度慢&#xf…

JVM内存模型理解

1、首先理解下什么是 jvm 内存模型&#xff1f; jvm内存模型定义了Java虚拟机运行时如何组织和管理内存&#xff0c;规定了各个内存区域的作用、结构和交互方式&#xff0c;以及线程间的内存可见性、内存操作的原子性等行为&#xff0c;以支持Java程序的执行&#xff0c;即一种…

【Pytorch】学习记录分享11——PyTorch GAN对抗生成网络

PyTorch GAN对抗生成网络 0. 工程实现1. GAN对抗生成网络结构2. GAN 构造损失函数&#xff08;LOSS&#xff09;3. GAN对抗生成网络LOSS损失函数说明 0. 工程实现 1. GAN对抗生成网络结构 2. GAN 构造损失函数&#xff08;LOSS&#xff09; LOSS公式与含义&#xff1a; LOSS…