了解长短期记忆 (LSTM) 网络:穿越时间和记忆的旅程

一、说明

        在人工智能和机器学习的迷人世界中,长短期记忆 (LSTM) 网络作为一项突破性创新脱颖而出。LSTM 旨在解决传统循环神经网络 (RNN) 的局限性,尤其是在学习长期依赖性方面的局限性,彻底改变了我们在各个领域建模和预测序列的能力。本文深入探讨了 LSTM 网络的核心机制、其独特功能以及改变行业的应用。

在时间和记忆领域,LSTM 网络就像警惕的守护者,弥合了现在转瞬即逝的低语和过去深刻的回声之间的差距。

二、序列的挑战

        在了解 LSTM 之前,了解为什么建模序列(如时间序列数据或语言)具有挑战性至关重要。包括 RNN 在内的传统神经网络都在与“长期依赖性”作斗争。从本质上讲,他们发现很难记住和连接序列中相距太远的信息。想象一下,试图理解一本小说的情节,但只记住你读过的最后几页——这就是 RNN 在处理长序列时面临的问题。

2.1 LSTM 的出现

        长短期记忆网络是由 Sepp Hochreiter 和 Jürgen Schmidhuber 在 1997 年开发的。他们的创新是设计一个能够学习存储哪些信息、存​​储多长时间以及丢弃哪些信息的神经网络。这种能力对于处理相关信息跨越较大时间间隔的序列至关重要。

2.2 LSTM 的核心组件

        LSTM 引入了几个关键组件:

  1. 记忆单元:LSTM 单元的核心是记忆单元,它可以长期保留信息。它类似于人类记忆的数字形式。
  2. :这些是 LSTM 网络的调节器,由遗忘门、输入门和输出门组成。门是决定允许多少信息通过的神经网络。
  • 遗忘门:确定要擦除存储单元的哪些部分。
  • 输入门:用当前输入的新信息更新存储单元。
  • 输出门:根据当前输入和单元的内存决定输出什么。

2.3 LSTM 工作流程

序列处理过程中 LSTM 单元内的过程可以描述如下:

  1. 忘记不相关的数据:忘记门评估新的输入和之前的隐藏状态,决定哪些信息不再相关并且应该被丢弃。
  2. 存储重要信息:输入门识别有价值的新信息并相应地更新单元状态。
  3. 计算输出:输出门使用更新的细胞状态来计算将作为该时间步的隐藏状态输出的细胞状态部分。

2.4 LSTM网络的应用

LSTM 已得到广泛应用,证明了它们的多功能性和有效性:

  1. 自然语言处理 (NLP):从生成文本到翻译语言以及为会话代理提供支持,LSTM 在理解和生成人类语言方面发挥着关键作用。
  2. 时间序列预测:在金融、天气预报和能源需求预测中,LSTM 可以对复杂的时间模式进行建模以进行准确的预测。
  3. 音乐和艺术生成:LSTM 可以在创意领域生成序列,通过学习现有作品中的模式来制作音乐甚至艺术品。
  4. 医疗保健:它们通过分析连续的患者数据来预测疾病进展,用于预测诊断。

三、代码

        使用长短期记忆 (LSTM) 网络创建完整的 Python 示例涉及几个步骤:生成合成数据集、构建 LSTM 模型、在数据集上训练模型,最后绘制结果。为此,我们将使用numpytensorflow、 和 等库。matplotlib

首先,确保您已安装所需的库:

pip install numpy tensorflow matplotlib

这是完整的代码:

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
import matplotlib.pyplot as plt# Parameters
n_steps = 50
n_features = 1# 1. Generate Synthetic Dataset
def generate_sine_wave_data(steps, length=1000):x = np.linspace(0, length * np.pi, length)y = np.sin(x)sequences = []labels = []for i in range(length - steps):sequences.append(y[i:i+steps])labels.append(y[i+steps])return np.array(sequences), np.array(labels)X, y = generate_sine_wave_data(n_steps)
X = X.reshape((X.shape[0], X.shape[1], n_features))# 2. Build LSTM Model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')# 3. Train the Model
model.fit(X, y, epochs=20, verbose=1)# Predictions for plotting
x_input = np.array(y[-n_steps:])
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_input, verbose=1)# 4. Plot the Results
plt.plot(y[-100:], label='Actual')  # Plot the last 100 actual values
next_time_step = len(y)  # Next time step after the last actual value
plt.scatter(next_time_step, yhat[0], color='red', label='Predicted')  # Plot the predicted value
plt.title("LSTM Model Predictions vs Actual Data")
plt.legend()
plt.show()

解释

  • 合成数据生成:我们生成正弦波作为我们的数据集。
  • LSTM 模型构建:一个简单的 LSTM 模型,具有一个 LSTM 层和一个 Dense 层。
  • 训练:模型根据合成数据进行训练。
  • 绘制结果:我们绘制数据集的最后一部分以及模型对下一个时间步的预测。

请注意,此代码是一个基本示例。现实世界的应用程序需要更复杂的数据处理、模型调整和验证技术。此外,运行此代码需要安装了必要库的 Python 环境。

四、结论

        长短期记忆网络的发展是我们迈向更智能、更强大的人工智能系统之旅的一个重要里程碑。通过模仿人类记忆的选择性保留和回忆,LSTM 提供了一种强大的工具,可以以深度和暂时的方式理解我们周围的世界。随着我们不断完善和构建这些网络,潜在的应用程序与它们旨在建模的序列一样广泛。在人工智能领域,LSTM 不仅仅与记忆有关,而且与记忆有关。它们以一种以前无法实现的方式理解世界的连续性和背景。

md-com@evertongomede

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/317112.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用Embedding优化搜索功能

我们继续用Gemini学习LLM编程之旅。 Embedding是一种自然语言处理 (NLP) 技术,可将文本转换为数值向量。Embedding捕获语义含义和上下文,从而导致具有相似含义的文本具有更接近的Embedding。例如,句子“我带我的狗去看兽医”和“我带我的猫去…

2023.12.27 关于 Redis 数据类型 List 常用命令

目录 List 类型基本概念 List 类型特点 List 操作命令 LPUSH LPUSHX RPUSH RPUSHX LRANGE LPOP RPOP LINDEX LINSERT LREM LTRIM LSET 阻塞版本的命令 阻塞版本 和 非阻塞版本的区别 BLPOP & BRPOP List 类型基本概念 Redis 中的列表(list&am…

LobeChat:搭建你的私人 GPT!

前端训练营:1v1私教,终身辅导计划,帮你拿到满意的 offer。 已帮助数百位同学拿到了中大厂 offer。欢迎来撩~~~~~~~~ Hello,大家好,我是 Sunday。 之前有同学问我:“老师,我想要搭建一个个人的 …

老师的职业特点是什么

老师,这个职业看似平凡,却承载着塑造下一代的重任。不仅传授知识,更是引导学生成为自己期望的人。 具备扎实的专业知识。这不仅是教好课的基础,也是赢得学生尊敬的关键。时刻保持对所教专业的热爱和关注,通过自己的经验…

Android 串口协议

前言 本协议是 Android 应用端与主控板之间的通信协议,是串行通信协议。 协议要求同一时间只能有两个通讯端点在相互通讯,采用小端传输数据。 硬件层基于RS485协议,采取半双工,一主多从的通讯模式。Android定义为主机&#xff0c…

声明式管理方(yaml)文件

声明式管理方(yaml)文件: 1、适合对资源的修改操作 2、声明式管理依赖于yaml文件,所有的内容都在yaml文件当中。 3、编辑好的yaml文件需要依靠陈述是还是要依靠陈述式的命令发布到k8s集群当中 create只能创建,不能更新。从指定yaml文件中读取配置&#…

C++Qt6 哈夫曼编码求解 数据结构课程设计 | JorbanS

一、 问题描述 在进行程序设计时,通常给每一个字符标记一个单独的代码来表示一组字符,即编码。在进行二进制编码时,假设所有的代码都等长,那么表示 n 个不同的字符需要 位,称为等长编码。如果每个字符的使用频率相等&…

【计算机毕业设计】SSM实现的在线农产品商城

项目介绍 本项目分为前后台,且有普通用户与管理员两种角色。 用户角色包含以下功能: 用户登录,查看首页,按分类查看商品,查看新闻资讯,查看关于我们,查看商品详情,加入购物车,查看我的订单,提交订单,添加收获地址,支付订单等功能。 管理员角色包含以…

SD-WAN组网方式详解

企业网络的演进势不可挡,对于高效、可靠的网络连接需求日益增加。SD-WAN(软件定义广域网)作为一项创新的网络技术,备受企业青睐并得到广泛应用。SD-WAN提供了多种灵活的组网方式,以满足企业多样化的需求和不同的网络环…

算法28:力扣64题,最小路径和------------样本模型

题目: 给定一个二维数组matrix,一个人必须从左上角出发,最后到达右下角 。沿途只可以向下或者向右走,沿途的数字都累加就是距离累加和 * 返回累加和最小值 思路: 1. 既然是给定二维数组matrix,那么二维数…

Vue - 多行文本“展开、收起”功能

TextClamp 使用 js 实现文本展开、收起,并非纯 CSS 实现。 Props: fontSize:Number,默认:14lines:Number,默认:1lineHeight:Number,默认:20 F…

获取网页信息

每次copy & paste总是很麻烦,现在有点问题,先记录下来。 需求:获取url 里Feature list,并输出表格形式 可以用Convert curl commands to code:得到get请求的header,cookie等 import requests import…