【Week-P4】CNN猴痘病识别

文章目录

  • 一、环境配置
  • 二、准备数据
  • 三、搭建网络结构
  • 四、开始训练
  • 五、查看训练结果
  • 六、总结
    • 2.3 ⭐`torch.utils.data.DataLoader()`参数详解
    • 6.1 `print()`常用的三种输出格式
    • 6.2 修改网络结构
      • 6.2.1 增加池化、卷积和bn层
      • 6.2.2 增加卷积、bn、卷积、bn

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制
    在这里插入图片描述
  • 本周的代码相对于上周增加指定图片预测与保存并加载模型这个两个模块,在学习这个两知识点后,时间有余的同学请自由探索更佳的模型结构以提升模型是识别准确率,模型的搭建是深度学习程度的重点。

一、环境配置

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlibimport sys
from datetime import datetime
print("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

在这里插入图片描述

二、准备数据

2.1 打印classeNames列表,显示每个文件所属的类别名称
2.2 打印归一化后的类别名称,01
2.3 划分数据集,划分为训练集&测试集,torch.utils.data.DataLoader()参数详解
2.4 检查数据集的shape

  • 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象
  • 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
  • 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classNames
  • 第四步:打印classNames列表,显示每个文件所属的类别名称。
import os,PIL,random,pathlib
print("------------2.1 打印classeNames列表,显示每个文件所属的类别名称------------")
total_datadir= './4-data/'
data_dir = pathlib.Path(total_datadir)data_paths = list(total_datadir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print("classNames: ", classNames)print("------------2.2 打印归一化后的类别名称,0或1------------")
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print("total_data: ", total_data)
print("total_data.class_to_idx: ", total_data.class_to_idx)print("------------2.3 划分数据集,划分为训练集&测试集------------")
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print( f"train_dataset: {train_dataset}, test_dataset: {test_dataset}")
print( f"train_size: {train_size}, test_size: {test_size}")print("------------2.4 检查数据集的shape------------")
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

在这里插入图片描述

三、搭建网络结构

print("------------3 搭建简单CNN网络------------")
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))      x = F.relu(self.bn2(self.conv2(x)))     x = self.pool(x)                        x = F.relu(self.bn4(self.conv4(x)))     x = F.relu(self.bn5(self.conv5(x)))  x = self.pool(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model

在这里插入图片描述

四、开始训练

4.1 设置超参数
4.2 编写训练函数
4.3 编写测试函数
4.4 开始正式训练,epochs==20

print("------------4.1 设置超参数------------")
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)print("------------4.2 编写训练函数------------")
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossprint("------------4.3 编写测试函数------------")
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossprint("------------4.4 开始正式训练,epochs==20------------")
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述

五、查看训练结果

5.1 Loss与Accuracy图
5.2 指定图片进行预测
5.3 保存并加载模型

print("------------5.1 Loss与Accuracy图------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()print("------------5.2 指定图片进行预测------------")
from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')# 预测训练集中的某张照片
predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg', model=model, transform=train_transforms, classes=classes)print("------------5.3 保存并加载模型------------")
# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

在这里插入图片描述

六、总结

2.3 ⭐torch.utils.data.DataLoader()参数详解

torch.utils.data.DataLoaderPyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader 构造函数接受多个参数,下面是一些常用的参数及其解释:

  1. dataset(必需参数):这是你的数据集对象,通常是 torch.utils.data.Dataset 的子类,它包含了你的数据样本。
  2. batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1
  3. shuffle(可选参数):如果设置为 True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False
  4. num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加>快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据
  5. pin_memory(可选参数):如果设置为 True,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False
  6. drop_last(可选参数):如果设置为 True,则在最后一个小批次可能包含样本数小于 batch_size 时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False
  7. timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位),这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制
  8. worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。

6.1 print()常用的三种输出格式

    1. 带格式输出,{0}是指输出的第0个元素,同理{1}为第1个元素,{2}为第2个… 可以不按顺序排列
      print( "Hello {0}, I'm {2}, I,m {1} year old".format("world", age, name) )
    1. 使用类型输出,指定输出类型
      print( "I am %s, today is %d year"%(name, year) )
    1. f字符串,{}中为元素,是.format的简化形式
      print( f"Today is {year}")  

6.2 修改网络结构

6.2.1 增加池化、卷积和bn层

在这里插入图片描述
在这里插入图片描述
训练结果如下:
在这里插入图片描述
在这里插入图片描述
训练结果表明:修改网络结构之后,test_accuracy反而从85.3%降低到82.5%,说明此次修改结构不能提升test_accuracy的值。

6.2.2 增加卷积、bn、卷积、bn

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
训练结果表明:与6.2.1的修改方法相比,test_accuracy从82.5%提升到84.4%。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/318749.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Uniapp使用wx.getFuzzyLocation()方法,没有超过日调用次数,报错:“此key每日调用已达到上限”

前言: 最近在进行一个小程序项目开发的时候,使用wx.getFuzzyLocation()方法,没有超过日调用次数,但是却出现了报错:“此key每日调用已达到上限”。 解决方案: 打开腾讯位置服务 - 立足生态,连…

Eureka学习思维导图

一、Eureka Server原理解析 参考:https://www.jianshu.com/p/eb690e6ab11d 二、Eureka Client源码解析 参考:https://www.jianshu.com/p/6e8850387da6

odoo 客制化审批流

以BPM、OA为代表的应用平台,低代码处理为前提的审批流功能定制化 功能介绍: 业务对象:针对侵入式注册BPM业务场景:设置审批场景:如:请假大于三天的场景、金额大于1000的场景节点条件: 当符合某…

钡铼分布式IO在玻璃制造中的实时数据采集与监控应用介绍

导读 玻璃行业多年来一直广泛使用 PLC 来帮助管理生产过程所需的精确材料比例,完全依赖其PLC进行数据采集与控制,并且大量依靠人工来操作,所以这些高成本推动了对成本较低的替代方案的需求。 场景描述 某玻璃厂生产的玻璃生产包括配料段、熔…

Android App从备案到上架全过程

不知道大家注意没有,最近几年来,新的移动App想要上架是会非常困难的,并且对于个人开发者和小企业几乎是难如登天,各种备案和审核。但是到底有多难,或许只有上架过的才会有所体会。 首先是目前各大应用市场陆续推出新的声明,各种备案截止日期到12月就要到最后期限责令整改…

74HC595驱动数码管程序

数码管的驱动分静态扫描和动态扫描两种,使用最多的是动态扫描,优点是使用较少的MCU的IO口就能驱动较多位数的数码管。数码管动态扫描驱动电路很多,其中最常见的是74HC164驱动数码管,这种电路一般用三极管作位选信号,用…

【UnityShader入门精要学习笔记】(3)章节答疑

本系列为作者学习UnityShader入门精要而作的笔记,内容将包括: 书本中句子照抄 个人批注项目源码一堆新手会犯的错误潜在的太监断更,有始无终 总之适用于同样开始学习Shader的同学们进行有取舍的参考。 文章目录 复习(阶段性总结…

《JSR303参数校验》

一、基础概述 1.简介 Java API 规范 (JSR303) 定义了 Bean 校验的标准 validation-api,但没有提供实现。hibernate validation 是对这个规范的实现,并增加了校验注解如 Email、Length 等。Spring Validation 是对 hibernate validation 的二次封装&…

linux centos 部署 jenkins

一、试了用容器部署,不行。(建议别用容器部署) 二、直接部署在主机上 1、安装java环境 yum install java-11-openjdk-devel # 检查 java -version # 打印 [rootiZwz9a99mctbkabkh2imhdZ init.d] java -version openjdk version "11.0.21" 2023-10-17 L…

Django Web 开发实战-实现用户管理系统(部门管理、用户管理、注册登录、文件上传)

简介 基于Django Python Web框架 MySQL Bootstrap 开发的用户管理系统。支持增删改查、模糊搜索、分页。 功能介绍 部门管理---》已完成 用户管理---》已完成 认证(注册/登录)---》开发中 数据统计---》待开发 文件上传---》待开发 效果图 部门…

设计模式之建造者模式【创造者模式】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档> 学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某…

1.3 力扣二叉树中等题

题目一: 669. 修剪二叉搜索树 给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除&…