异步优势演员-评论家算法 A3C

异步优势演员-评论家算法 A3C

    • 异步优势演员-评论家算法 A3C
      • 网络结构
      • 并行步骤

 


异步优势演员-评论家算法 A3C

A3C 在 A2C 基础上,增加了并行训练(异步)来提高效率。

网络结构

A2C:

A3C:

在这两张图之间,第 2 张图增加了以下几个关键部分:

  1. 全局网络(Global Network):这表明有一个中央网络(可能在服务器上运行),它维护着策略(Policy π(s))和价值(V(s))函数。这是模型的核心部分,其训练了共享的策略和价值函数。

  2. 多个工作者(Workers):图中展示了多个工作者(Worker 1, Worker 2, …, Worker n),每个工作者都有自己的网络副本。这些工作者可以并行地在不同的环境实例中探索和学习。

  3. 并行环境:与每个工作者相连的是不同的环境实例(Environment 1, Environment 2, …, Environment n)。这意味着每个工作者都可以在自己的环境副本中独立地进行学习,这增加了样本的多样性并加快了训练过程。

  4. 异步更新:工作者在自己的环境中收集经验后,会异步地将这些经验反馈给全局网络。这通常涉及到梯度或参数更新。

第一张图是一个单一智能体的演员-评论家架构,没有显示出并行处理或异步更新的特征。

第二张图在第一张图的基础上增加了并行化和分布式计算的概念,这是现代强化学习算法中用于加速训练和提高稳定性的常见技术。

A3C 核心是,通过多个智能体(或称为“工作者”)在不同的环境副本中同时运行来加速学习过程。

并行步骤

A3C 算法的流程:

  1. 初始化全局网络

    • 首先,创建一个全局网络,它有两个主要部分:演员(Actor)和评论家(Critic)。
    • 演员部分负责输出动作的概率分布。
    • 评论家部分负责评估采取某个动作的期望回报。
  2. 启动多个工作者

    • 同时启动多个工作者(智能体),每个工作者都有自己的网络副本,这些副本的初始权重来自全局网络。
    • 每个工作者都在自己的环境副本中运行,这些环境互不干扰。
  3. 工作者独立探索

    • 每个工作者根据自己的网络副本和当前状态来选择动作,并观察结果和奖励。
    • 工作者会继续这个过程,直到达到一定的时间步数或者终止条件(例如,完成任务或任务失败)。
  4. 计算梯度并更新全局网络

    • 工作者使用其经验(状态、动作、奖励等)来计算梯度。这些梯度用于改进其网络副本。
    • 然后,这些梯度被发送到全局网络,并用于更新全局网络的权重。
  5. 同步工作者网络

    • 更新全局网络后,工作者将全局网络的新权重复制到自己的网络副本中。
    • 这样,所有工作者都可以从全局网络学到的新知识中受益。
  6. 重复探索和学习过程

    • 工作者再次开始在其环境中探索,并重复上述过程。
    • 这个过程会不断重复,工作者不断探索、学习并更新全局网络。
  7. 终止条件

    • 当全局网络达到一定的性能标准,或者经过足够多的更新周期后,算法可以停止。
    • 此时,全局网络已经足够好,可以用来做决策或进一步的任务。

A3C 算法的关键优势在于并行性和异步更新。

多个工作者同时探索不同的策略和环境,可以更快地覆盖更广泛的状态空间,而不必等待其他工作者完成。

异步更新意味着全局网络不断地接收来自多个源的梯度信息,这可以导致更快的学习和更稳定的收敛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/318910.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全解析阿里云Alibaba Cloud Linux镜像操作系统

Alibaba Cloud Linux是基于龙蜥社区OpenAnolis龙蜥操作系统Anolis OS的阿里云发行版,针对阿里云服务器ECS做了大量深度优化,Alibaba Cloud Linux由阿里云官方免费提供长期支持和维护LTS,Alibaba Cloud Linux完全兼容CentOS/RHEL生态和操作方式…

DataGear 4.7.0 发布,数据可视化分析平台

DataGear 4.7.0 发布,严重漏洞和BUG修复,具体更新内容如下: 新增:HTTP数据集新增【编码请求地址】支持,可用于解决请求地址中文乱码问题;新增:新增数据源密码加密存储支持(开启需设…

Yapi安装配置(CentOs)

环境要求 nodejs(7.6) mongodb(2.6) git 准备工作 清除yum命令缓存 sudo yum clean all卸载低版本nodejs yum remove nodejs npm -y安装nodejs,获取资源,安装高版本nodejs curl -sL https://rpm.nodesource.com/setup_8.x | bash - #安装 s…

Unable to connect to Redis server

报错内容: Exception in thread "main" org.redisson.client.RedisConnectionException: java.util.concurrent.ExecutionException: org.redisson.client.RedisConnectionException: Unable to connect to Redis server: 175.24.186.230/175.24.186.230…

物联网安全:保护关键网络免受数字攻击

物联网 (IoT) 彻底改变了当今互联世界中的各个行业,实现了智能家居、自动驾驶汽车和先进的工业系统。然而,随着物联网设备数量的急剧增加,这些设备和相应网络的安全性已成为人们关注的焦点。本文旨在探讨物联网安全的重要性,同时简…

❀记忆冒泡、选择和插入排序算法思想在bash里运用❀

目录 冒泡排序算法:) 选择排序算法:) 插入排序算法:) 冒泡排序算法:) 思想:依次比较相邻两个元素,重复的进行直到没有相邻元素需要交换,排序完成。 #!/bin/bash arr(12 324 543 213 65 64 1 3 45) #定义一个数组 n${#arr[*]} #获取数组…

Canal+RabbitMQ实现MySQL数据同步至ClickHouse

ClickHouse作为一个被广泛使用OLAP分析引擎,在执行分析查询时的速度优势很好的弥补了MySQL的不足,但是如何将MySQL数据同步到ClickHouse就成了用户面临的第一个问题。本文利用Canal来实现ClickHouse实时同步MySQL数据,使用RabbitMQ来做消息队…

01、Kafka ------ 下载、安装 ZooKeeper 和 Kafka

目录 Kafka是什么?安装 ZooKeeper下载安装启动 zookeeper 服务器端启动 zookeeper 的命令行客户端工具 安装 Kafka下载安装启动 Kafka 服务器 Kafka是什么? RabbitMQ的性能比ActiveMQ的性能有显著提升。 Kafka的性能比RabbitMQ的性能又有显著提升。 K…

神经网络:经典模型热门模型

在这里插入代码片【一】目标检测中IOU的相关概念与计算 IoU(Intersection over Union)即交并比,是目标检测任务中一个重要的模块,其是GT bbox与pred bbox交集的面积 / 二者并集的面积。 下面我们用坐标(top&#xff0…

本地缓存 - LoadingCache

本地缓存 面试经常会被问到如何解决缓存击穿问题,今天就来带你弄懂他!平时业务中也会经常使用到本地缓存,公司里使用比较多的本地缓存 loadingcache,其背后的架构就是Guava cache,Guava Cache 是一个全内存的本地缓存实现&#x…

李沐机器学习系列2--- mlp

1 Introduction LP中有一个很强的假设,输入和输出是线性关系,这一般是不符合事实的。 通过几何的方式去对信息进行理解和压缩是比较高效的,MLP可以表示成下面的形式。 1.1 从线性到非线性 X ∈ R n d X \in R^{n \times d} X∈Rnd表示输入…

分布微服软件体系快速云端架构

1 概述 分布微服软件体系云端架构平台,以主流的NACOS服务器作为注册配置中心,采用主流的Gradle框架,内嵌Tomcat10以上版本,用于快速构造各类基于JDK17以上的信息应用系统的分布式微服务软件体系架构,可以适用关系型SQ…